
HEP Applications and their experience with the use of

DataGrid middleware

I.Augustin, F.Carminati, J.Closier, E.van.Herwijnen and A.Sciaba
CERN

D. Boutigny and J.J. Blaising
LAPP/Annecy,CNRS,France

V. Garonne and A.Tsaregorodtsev
Marseille,CNRS,France

K. Bos, D.Groep, W.van.Leeuwen and J.Templon
NIKHEF,Holland

P. Capiluppi, A.Fanfani and C.Grandi
Bologna,INFN,Italy

R. Barbera
Catania,INFN,Italy

E. Luppi
Ferrara,INFN,Italy

G.Negri, L.Perini and S.Resconi
Milan,INFN,Italy

M. Reale and A.De. Salvo
Roma1,INFN,Italy

S.Bagnasco and P. Cerello
Turin,INFN,Italy

O. Smirnova
Lund University,Sweden

O. Maroney
Bristol University,UK

F. Brochu
Cambridge University,UK

D. Colling
Imperial College,UK

F. Harris and I. Stokes-Rees
Oxford University,UK

S. Burke
RAL,UK

April 1, 2004

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

wp8.tex; 5/04/2004; 11:09; p.1



2 I. Augustin et al.

Abstract. An overview is presented of the characteristics of HEP computing and
its mapping to the Grid paradigm. This is followed by a synopsis of the main experi-
ences and lessons learned by HEP experiments in their use of DataGrid middleware.
Particular reference is made to experiment ’data challenges’, and a forward look is
given to necessary developments in the framework of the forthcoming EGEE project.

Keywords: HEP,Applications,Grid,middleware,EDG,EGEE,LCG,LHC

1. High Energy Physics (HEP) Computing

Computing has always been important for nuclear and particle physics
as many of the physics processes can only be studied statistically us-
ing large samples of data. The experiments which are currently being
prepared for the LHC (Large Hadron Collider) [1] at the European
Laboratory for Particle Physics CERN [2] in Geneva, will be looking
for reactions which are expected to be detected only a few times per
year. The samples of data to be processed off-line to find these events
will total thousands of Terabytes. The associated computing is both
CPU and data intensive involving highly tuned “data mining”.

The European DataGrid (EDG) project [3] came at a time of the
LHC project [4] preparation when Monte Carlo studies of the physics
processes and the detector responses to those processes were very im-
portant. In a Monte Carlo simulation several steps can be recognised:

1) event simulation
2) detector simulation
3) detector response simulation
4) background simulation.

In 1), the event simulation, all knowledge of physics processes has
been encapsulated in code and running such code will produce lists of
the particles produced when two protons collide together with their
properties.

In 2), the detector simulation step of the calculation, all these parti-
cles are tracked through the whole volume of the detector. This is by far
the most compute intensive step of the calculation, involving tracking
thousands of particles with tiny steps through very large detectors. A
particle makes a small step in 3-dimensional space and for each step a
possible change of direction is calculated if a magnetic field is present
and if the particle is charged. Moreover, as a function of the material
in which the particle progresses, multiple scattering and energy loss
is calculated. And at each step the probability is calculated that the
particle may decay into other particles or annihilate or be absorbed.

wp8.tex; 5/04/2004; 11:09; p.2



HEP Applications 3

In 3), the last step of the simulation, the detector response to the
traversal of all the tracks is determined. This means that a detailed
layout of all active elements, their position and their read-out elec-
tronics has to be known. The output from this step in the program
sequence must be data that looks just like the real data which will be
collected with beams colliding at the centre of the detector. Such data
can then subsequently be used to test the data reconstruction programs
as if it were real data from the detector. This is also important for
the development of reconstruction algorithms and to determine the
reconstruction efficiency.

In 4), to make the data for testing the reconstruction more realis-
tic, extra data has to be added to each event. This extra data comes
from different classes of background to the signal event of interest. This
background arises from, for example, other possible events in the same
proton-proton bunch collision.

At all steps of this program sequence data has to be fed to the run-
ning code, both through data files and experiment specific data bases
accessible to the running program. This general scenario is implemented
in different ways in each experiment which has its own data model.

The raw physics data, itself totalling several Petabytes, will be gen-
erated and stored at CERN. The processing of this data will be dis-
tributed world-wide. The models for this processing and associated
data distribution are still under evaluation, but certainly these models
include replication of large sample of reconstructed data throughout
the collaborations.

The amount of data coming from the reconstruction is less than
the raw unprocessed data, but is still very significant in size. However,
while the unprocessed data is likely to be needed only a few times, the
processed data, which is used for physics analysis, is used over and over
again a by many physicists and at many places. Moreover, whereas the
reconstruction is a relatively controlled process which will be operated
by a limited number of specialised people, analysis operates around
the clock on a world-wide basis according to the work patterns and
pressures of individual scientists and engineers. So there is a need for
the data needed for these analyses to be even more distributed than
the raw, unprocessed data.

The databases with experiment-specific data have to be replicated at
various places for efficiency reasons as they are most frequently needed:
for reconstruction, for analysis and for Monte Carlo simulations. Plans
for replicated databases exist but they were not tested within the EDG
project.

The 4 LHC experiments (ALICE, ATLAS, CMS and LHCb) have
all developed detailed planning for computing leading up to the LHC

wp8.tex; 5/04/2004; 11:09; p.3



4 I. Augustin et al.

Table I. Summary of CMS Data Challenge 2004

simulation digitisation reconstruction

time allocated months 5 2 1

CPU per event KSI2K s 160 24 12

input event size MB 0.04 0.90 0.70

output event size MB 0.90 0.70 0.15

events per job 250 1000 250

CPU per job KSI2K s 40000 24000 3000

output size per job MB 225 700 37.5

duration of job hours 20.20 12.12 1.19

nr. of input files/job 1 4 3

nr. of output files/job 1 3 16

tot. CPU at requested eff. KSI2K month 4115.2 617.3 308.6

tot. CPU power KSI2K 822.80 308.55 308.00

tot. nr. of CPU’s requested 1496 561 440

tot. output data size TB 45 35 7.5

tot. nr. of files produced 200000 150000 3200000

event freq. (at 100% eff.) Hz 5.143 12.856 25.667

job submission freq. jobs/day 1777 1110 8870

output freq. MB/s 4.6 9.0 3.9

file registration freq. (at 100% eff.) Hz 0.0206 0.0386 1.6427

start-up in 2007. This includes large scale data challenges taking place
in 2004. As an example, Table I summarises the characteristics of the
data challenge being performed in spring 2004 by CMS.

The data challenge is logically divided into 3 data processing phases
(Generation & Simulation, Digitisation and Reconstruction), followed
by a data distribution phase. To reach a reconstruction event rate of
25 Hz, which corresponds to 25% of the LHC startup rate in 2007,
50 million events must be processed in one month. This work is being
executed in an organised production mode. There will be future eval-
uations of the performance of the grid in supporting chaotic use by
thousands of users.

The number of CPUs dedicated to the different steps of the challenge
has been calculated assuming 75% efficiency during the allocated time.
From the characteristics of the programs, the interaction frequencies
with the Grid Workload Management System and the Replica Manager
have been extracted. For the reconstruction phase about 9000 jobs per
day are submitted to the WMS, 1.6 files per second registered to the
RM (2 interactions per second are needed if considering also the lookup
frequency), and 4 MB/s are transferred to each Regional Centre.

It should be noted that this challenge is using components both from
Grid projects and from CMS.

wp8.tex; 5/04/2004; 11:09; p.4



HEP Applications 5

2. HEP computing and the Grid –
the model and the use cases

For many years the HEP community has been running large distributed
computing infrastructures. The Grid paradigm offers an opportunity to
have a homogeneous view of a world-wide virtual computing system,
and potentially access to world-wide resources.

The HEP computing user expects to see a widely distributed com-
puting infrastructure, including hardware resources and the correspond-
ing software tools and services, which allow optimal execution of com-
putational tasks, with appropriate access to the distributed data. The
Grid is assumed to provide proper authentication and authorisation,
transparent access to resources, and overall management of the neces-
sary databases.

2.1. Users and Virtual Organisations (VO)

A community is organised within a VO which has appropriate struc-
tures and authorisations according to the role of the user. Typically an
HEP VO is organised in groups and sub-groups such as “experiment
production”, “physics group production”, “group user analysis” and so
on.

A user is any individual associated with a VO using the Grid services
in the process of performing computational work. A user typically sub-
mits jobs to the Grid, i.e. requests of work to be done or actions to be
taken on his behalf. Sometimes this kind of user is called an “end user”
to indicate that she is not part of the service-providing infrastructure,
but rather at the “end” of the service providing chain. Typically, in the
scope of HEP users are physicists, engineers and computer scientists
working for the ultimate goal of extracting the physics information from
the collected data. Other kinds of “actors” accessing Grid resources are
described in the following section. We have used the term “actor” in a
set of use case analyses developed for HEP computing [11].

2.2. Actors and use cases

To identify a set of common use cases, it was necessary to start with
the definition of the actors that are involved in the computing activity
of a LHC experiment. The same physical person may play more than
one role depending on her activity at a given moment. Examples of the
actors are:

− Individual Users

− Production managers

wp8.tex; 5/04/2004; 11:09; p.5



6 I. Augustin et al.

− Managers (spokesperson, computing coordinator, physics coordi-
nator)

− Developers of experiment-specific software tools;

− Software maintainers and distributors (librarians).

2.3. The HEPCAL use cases

The HEPCAL document [11], [13] was published in May 2002. It gives
43 use cases related to the expected use of Grid middleware in an HEP
context. This was a natural development of the ongoing requirements
work which was accomplished at the start of the project [14].

HEPCAL distinguishs two logical entities containing data: cata-
logues and datasets. A catalogue is a collection of data that is up-
datable and transactional. A dataset is a read-only collection of data.
Datasets or catalogues might be implemented as one or more files;
however they might be implemented otherwise, such as in Objectiv-
ity [5] or Oracle [6] databases. The catalogues typically contains two
types of information, firstly Grid-specific such as information about
replicas, and secondly user-defined information, so-called metadata,
giving information related to the data which is application specific.

The use cases provide important benchmarks to measure the current
state of the technology. An evaluation of EDG middleware with respect
to these use cases in given in section 4.

3. Application evaluations of
Grid software components in EDG

Since late 2001 a series of evaluations were made of EDG middle-
ware. These fell into 2 classes, firstly generic evaluations of the basic
components, and secondly evaluations conduced by the HEP experi-
ments interfacing the middleware to their production systems. Below
we overview the results of these evaluations component by component.
In section 6 we summarise particular important results obtained by the
experiments. Throughout the EDG project HEP applications produced
3 major evaluation reports, [15], [16], [17] for the EU, and an overview
for CHEP03(Computing in High Energy Physics), [18].

wp8.tex; 5/04/2004; 11:09; p.6



HEP Applications 7

3.1. Storage Elements

In principle a Storage Element (SE) is a managed interface to mass
storage, and the required functionality has emerged gradually during
the EDG project. The initial concept only related to Mass Storage
Systems (MSS) with a large tape-based robotic store, which in the
HEP field have usually only been deployed at a small number of large
laboratories, and generally have customised, mutually incompatible
management software. However, tape robots are now being deployed
locally in some Universities, and many sites have multi-TB disk servers,
so a need is developing for the SE concept to be extended to provide an
interface to a wider range of systems, in a way which is easy to deploy
and manage with limited manpower and expertise.

In addition there is a need to have some management of disk space
local to jobs running on batch worker nodes, to provide general scratch
space, for local copies of permanent files and to store application soft-
ware needed by jobs in execution. So far the SE concept has not been
extended to deal with these requirements, and management of local
storage is left to applications, but this appears to be an area which is
in the middleware domain and deserves further attention.

In the early stages of the project, before any interface had been
developed, a minimal SE was deployed which essentially consisted of a
GridFTP server running over a simple disk-based file system, or more
recently with an interface to a tape-based system. This so-called “classic
SE” provides the basic functionality to read and write files, and simple
access control via the Grid map file, but lacks any management features.

During the course of the EDG project a number of collaborators,
mainly in the HEP field, have been engaged in the definition of the Stor-
age Resource Manager (SRM) standard, which is intended to provide a
standard Grid-aware web service-based interface to any MSS. EDG has
participated in this work and the EDG SE middleware has evolved in
line with the standard. Other SRM implementations are being devel-
oped by other projects. However, as yet SRM is not fully mature and
a full assessment will have to wait for a stable implementation. The
initial experience is encouraging, but many desired features are not yet
available, e.g. reservation of disk space, pinning and automatic deletion
of cached copies of files, load balancing across disk servers, fine-grained
access control, and optimisation hints.

3.2. Replica Catalogues

File catalogues are at the heart of a data Grid, so performance and
integrity are crucial. For the first major release of the EDG software
the LDAP-based Globus Replica Catalog was used, but this proved to

wp8.tex; 5/04/2004; 11:09; p.7



8 I. Augustin et al.

be inadequate both in the small number of file names which could be
stored (a few thousand) and poor performance under load.

The second release uses a web-service front end to a standard database;
deployed systems so far use either Oracle or MySQL. This has proved
to be much more robust. The system has been tested up to O(100, 000)
entries with no sign of degradation, and there have been no outages due
to the catalogues themselves. The use of a Globally Unique Identifier
(GUID) as a file identifier appears to be a good design choice to solve
problems with name clashes in a distributed system.

However, as currently deployed we have only a single catalogue in-
stance for the whole Grid, which clearly represents a single point of
failure and a potential limit to scalability. The design of the system
envisages a local catalogue at each site with hierarchical indices to
aggregate the information, and evaluation awaits deployment in that
mode. Even in the relatively small testbed deployed so far scalability
problems can be seen, for example running 600 file registrations in
parallel shows an 0.5% failure rate due to catalogue communication
errors (there are no retries for such errors in the current release).

There are also performance issues in the current implentation asso-
ciated with the use of a web service interface with Java client tools.
Starting the Java Virtual Machine adds an overhead of several seconds
which is unsuitable for single operations with a command-line tool.
In addition the way data are transported means that queries which
return large amounts of data are extremely time-consuming, typically
taking 10 minutes to return 15,000 file names. Above about 50,000
matches to the query the client exceeds the configured memory limit.
These performance issues will be addressed in the forthcoming EGEE
project.

A general security mechanism for web services, allowing both au-
thentication and authorisation using extended GSI proxies, has been
developed within EDG. This awaits deployment and thorough testing.
This is vital for use in a production system.

3.3. Metadata Catalogues

Metadata is an area which still requires research at both the applica-
tion and middleware levels. Applications typically have large amounts
of metadata relating, for example, to the physics properties of events
stored in files. Queries on these properties are used to define the input
datasets to be processed. Such metadata is highly application-specific
and it is unlikely that completely generic middleware solutions can
be provided, but it is essential that standard interfaces are available

wp8.tex; 5/04/2004; 11:09; p.8



HEP Applications 9

to allow application metadata catalogues to be integrated with Grid
systems.

Metadata is also needed at the middleware level, for example to store
file sizes, timestamps and security information. The EDG middleware
also stores a human-readable Logical File Name in the metadata cat-
alogue. The system as deployed is essentially a prototype. It uses a
single database instance, currently shared with the Replica Catalogue,
but there is no existing model for extending this to a distributed system.
Apart from the LFNs the use of metadata is rudimentary, limited to
checking that the file size is correct after replication. Treating LFNs as
metadata rather than binding them tightly to GUIDs may not prove
to be the best design choice, but the use of file names at the applica-
tion level is not yet well-defined. The current security model envisages
storing security information (Access Control Lists) in proximity to the
files, but this is not yet implemented.

3.4. Replica Optimisation

A significant goal of a data Grid is to optimise access to data, both in
terms of running jobs at sites where they can most efficiently read their
data, and in replicating files from site to site in the most efficient way.
The EDG middleware has optimisation support in a variety of areas,
including network monitoring to measure transfer rates between sites, a
service to estimate a cost function for the replication of a file between
specified Storage Elements, and some support in the job submission
system to schedule jobs on the basis of the the overall cost of access to
input data (although there is no support for automatic replication of
files before a job is run). The optimisation features have been integrated
in the EDG release and await thorough evaluation

3.5. Replica Management

A replica management system needs to bind together access to file
and metadata catalogues, Storage Elements and optimisation services
and provide a high-level managed replication and file access service.
The first release of the EDG middleware used software called GDMP,
which had been adapted from a non-Grid-enabled file mirroring system.
This had a C++-based client-server architecture with the concept of
subscriptions for groups of files between pairs of Storage Elements. In
practice this was found to be very difficult to configure and use correctly
in a Grid environment.

The second release has a completely new replica manager, which
is purely client code and is written in Java. The design has (at the
request of application groups) so far emphasised usability and reliability

wp8.tex; 5/04/2004; 11:09; p.9



10 I. Augustin et al.

over functionality. Functions provided include registration, replication
and deletion of single files, which can be identified by GUID or LFN.
Individual replicas can also be deleted. There is an interface to the
optimisation service, allowing the selection of the most efficient replica
relative to a given site, and to the SE for file listing and to obtain Trans-
fer URLs for supported access protocols. However, there is currently no
high-level interface to the catalogue query and metadata operations.

In terms of the implemented functionality the only significant prob-
lem is that the operations are very slow, e.g. registering a small file can
take more than 10 seconds. This is related to the switch from C++ to
Java and web service interfaces for the catalogues and SEs, and new
versions of the code are predicted to be much faster.

The Replica Manager is designed to support the web service security
interface integrated into the catalogues and SEs, but testing so far
has been limited because security is not yet enabled in the deployed
systems. The current security model ties the services, i.e. file catalogues
and name spaces on SEs, tightly to the Virtual Organisations, in that
each VO has only one catalogue and different VOs are unable to read
each other’s catalogues or files. This is more restrictive than the model
developed by the security group, but for HEP VOs which tend to be
large and static it may be adequate.

The initial priority of application groups was robustness with basic
functionality. However, applications will need a replica management
interface at a higher level. Some important elements to be developed
are:

a) In the present model all replicas are equivalent, there is no way to
designate a master copy which should not be deleted, or temporary
copies which can be deleted freely by the system.

b) There are no bulk transfer operations, all commands operate on
single files with the exception of a batch registration command.
For example, there is no single operation to replicate all files with
an LFN matching a given pattern, or with a creation date between
specified points. Such operations can in principle be embedded in
the application-level code, but are clearly likely to be common
between a wide variety of applications and hence are a good can-
didate for middleware support. Similarly there is no middleware
support for file collections to be treated as a unit.

c) The system does not have a robust transaction model. Failures
during compound operations can leave the system in a variety
of inconsistent states, and error reports often make it difficult to
determine the reason for a failure. There is usually no attempt to

wp8.tex; 5/04/2004; 11:09; p.10



HEP Applications 11

retry a failed operation, although this would in any case be difficult
without a client-server model.

d) A client-server model would also remove the current need for ac-
cess to the wide area network from batch worker nodes, which
is deprecated at many sites, and would enable the scheduling of
automatic replication under given conditions.

3.6. Job handling

3.6.1. Requirements
Certain specifics of HEP computing had to be taken into account while
developing workload management services. Typical constraints to be
met by EDG could in general be characterized as follows.

1. Resources consist of Linux clusters which are inhomogeneous both
in terms of hardware and configuration:

− mostly commodity hardware, no mainframes or parallel sys-
tems, hence no dedicated local scheduling systems;1

− a single OS (originally RedHat 6.2, later upgraded to 7.3) has
been chosen for the testbed;

− OpenPBS has been chosen as the principle supported batch
system for clusters, although LSF is also supported.

2. User tasks are predominantly non-interactive, serial jobs:

− there is a strong interest in interactive tasks, but this was not
the top priority in the first instance;

− certain user groups need to process parallel jobs as well, but
within one cluster only, hence no inter-cluster communication
is required.

3. Jobs typically process large amounts of data and involve movement
of big (up to several Gigabytes) files.

The main user requirements with respect to job handling can be
outlined as:

1. the Grid must present itself to the user as a “global batch system”,
providing seamless scheduling over distributed resources;

1 A couple of sites actually had dedicated batch systems, and certain attempts
to make use of them “as is” were made.

wp8.tex; 5/04/2004; 11:09; p.11



12 I. Augustin et al.

2. in absence of specific requirements, the job must be scheduled
to the best available resource, i.e., the one providing the fastest
turnaround;

3. if the job requires access to a large input data set, it is usually
desirable to move the job to the data, rather then other way around.

There are more detailed requirements, e.g., concerning job monitoring
(see the HEPCAL [11] document for the extended description). How-
ever, for the first test runs by the LHC experiments, the fulfillment of
at least those mentioned above was essential.

3.6.2. Performance
During the runs on the EDG testbeds, the Workload Management
System was put under heavy load. Typically, it performed up to ex-
pectations, allowing users to submit thousands of simultaneous jobs
and to be used in production runs with high efficiencies. However var-
ious problems were encountered by users. Below is the list of major
problems related to use of the EDG Workload Management System
(while very few failures can be attributed to the job handling system
as such, several may be avoidable with a different implementation):

− A centralized Resource Broker (RB) represents a single point of
failure. Even though another RB instance can be deployed, jobs
submitted via one RB can not be retrived via another. This re-
sulted in many jobs being inaccessible due to the unavailability of
the original RB.

− A centralized Logging/Bookkeeping (LB) service is another single
point of failure. Jobs cannot be managed while the LB is down,
and lack of a distributed design for such a service lead to many
jobs being suspended or lost altogether.

− Transfer of Input and Output Sandboxes of all the users through
a single RB is not scalable, especially in the absence of disk man-
agement tools. Many RB failures can be attributed simply to full
disks.

− The fact that data management is largely decoupled from the job
handling forced users to prepare wrapper scripts performing data
movement prior to and after the main task execution. While mov-
ing jobs to data is often profitable, it is not unusual that jobs will
wait in the queue on the cluster to which data are local longer than
it takes to download the file to an arbitrary cluster. No brokering
is provided which takes this factor into account, and JDL does not

wp8.tex; 5/04/2004; 11:09; p.12



HEP Applications 13

allow users to specify whether input data should be moved to the
job or other way around.

At the end of the project several important enhancements were
achieved, for example in the area of handling DAG (Directed Acyclic
Graph) job definitions. This was successfully demonstrated in the con-
text of CMS, and is extremely useful for defining the sub-job sequences
involved in HEP job definitions.

3.7. Information systems and monitoring

An Information System is crucial for the proper functioning of the
Workload Management System. A scalable, robust and reliable Infor-
mation System should be able to provide a solid basis for resource and
eventually job monitoring.

3.7.1. MDS
The MDS based Information System turned out to be the least reli-
able service of the first EDG testbed deployments. There were serious
problems with timeout handling and the implementation of indexing
services proved not to be scalable, causing servers to drop queries under
heavy load and effectively emptying the cache. This led to eventual
resource “invisibility”.

3.7.2. MDS amendments: BDII, GLUE schema
Poor performance of the Information System led to EDG developers
investigating a variety of solutions. One of them was to re-implement
the Information Index using the Berkeley Database Information In-
dex(BDII). This is an LDAP server backed by a Berkeley Database
which provides information according to the GLUE schema, and is
populated by regular queries to information providers at each site. Al-
though problems remained with stale information there were dramatic
increases in overall stability, and this model has been further refined
by LCG who have configured several BDIIs on a regional basis and
provided redundancy in the configurations.

It also became clear that the original EDG schema used by MDS was
inadequate: many important system parameters were not published,
and the entire structure of the schema was complex, largely unmain-
tainable and extremely difficult to interpret, especially by end-users.
This triggered a cross-Grid project, developing the so-called GLUE
schema [7], specifically oriented towards clusters and storage facilities.
This schema provides more flexibility and allows sites to publish more
parameters relevant not only to workload management, but also allow-
ing extensive monitoring. It was deployed in the latest phase of EDG

wp8.tex; 5/04/2004; 11:09; p.13



14 I. Augustin et al.

and served as a basis for the information schema used by the Grid2003
sites in US.

3.7.3. R-GMA
With a view to replacing MDS, the Relational Grid Monitoring Ar-
chitecture (R-GMA) [8] was designed and deployed in the later stages
of EDG. It implements a producer-consumer architecture using a rela-
tional data model, without a specific built-in hierarchy. To be compat-
ible with the RB, the information from the R-GMA tables is converted
to LDIF format, complying with the GLUE schema. This new R-GMA
Information System has been extensively tested during the final months
of the EDG project. More development and comprehensive tests of large
configurations are required before R-GMA can provide reliable services,
and LCG still deploys BDII/MDS, having invested very considerable
effort in developing and customising the IS configuration essential for
stable operation. R-GMA does, however, offer some significant advan-
tages over MDS, particularly in the ease with which users can add
their own tables to the schema and create their own data producers.
Both D0 [17] and CMS have successfully used these facilities for job
monitoring.

3.7.4. Monitoring
Given that the information services were constantly under develop-
ment, which resulted in instabilities and often insufficient information
provision, rather little was accomplished in the area of stable Grid mon-
itoring tools on the applications testbed in EDG . The only reliable way
to monitor job status was via the Logging and Bookkeeping database,
and very little site monitoring was available. However for the LCG, the
DataTAG/GridIce [9] monitoring service has been developed, based on
the EDG architecture and services and local site monitoring tools. It
provides a convenient access via a Web browser to the information on
Grid resources, accumulated activity reports, status of the Information
System etc.

3.8. Site deployment

The EDG approach to site deployment with Grid middleware and ap-
plications software was driven by the requirement to have a simple
procedure available quickly. Since the testbed was chosen to run a
uniform OS based on RedHat Linux, the straightforward choice for the
packaging tool was RPM. While this did not necessarily coincide with
tools preferred by the HEP experiments, all the user groups provided
their application software distribution kits in the required RPM format.

wp8.tex; 5/04/2004; 11:09; p.14



HEP Applications 15

The total set of packages to be deployed on the site amounted to sev-
eral hundreds, some being specific for services and some being common.
EDG conveniently decided to make use of the Local ConFiGuration
system (LCFG) [10], a centralized site installation and configuration
system. By configuring Grid services to use LCFG, system administra-
tors were largely spared the troubles of upgrading separate packages
and going through complicated configuration process. Every time such
a configured box boots, it retrieves the latest approved configuration
from the central server and deploys it. The packages served by LCFG
range from operating system upgrades to application-specific software.
Therefore, by checking the latest software upgrades into LCFG one
guarantees that the changes will be propagated to all the sites that use
the service.

Evidently, not every site owner would like to resort to a complete
LCFG-driven installation. For example, if a site runs a non-standard
OS, complete LCFG installation would imply installation of the official
OS, possibly including re-partitioning of disks and sp forth. Another
annoying problem encountered during the tests was related to the fact
that some applications software had cyclic dependencies, and in the
LCFG context it prevented entire nodes from being booted at all.
However, the latest LCFG version allows site owners to choose subsets
of packages to be upgraded, providing more flexibility.

Deployment of the EDG middleware on a non-dedicated site is much
more problematic. The site must run the supported OS version, or
find manpower to provide the porting. Packages have to be installed
manually, which is quite time-consuming. A very sensitive issue is the
fact that even worker nodes require some EDG-specific installation and
configuration, which is often unacceptable for sites which share their
resources with other user communities.

The fact that application-specific software was required to be in-
stalled in a centralized manner was convenient in the sense that users
did not have to bother about propagation of the software across the
testbed. This suits well the pattern of heavy production runs, lasting
for monthes without changing the software. However, this does not
scale for the case of user analysis and even non-standard production.
When parts of application software are expected to be changed at
times on an hourly basis, it makes sense to delegate responsibility for
the software installation from system administrators to actual users –
perhaps privileged ones only (see Section 2.2). This all but excludes the
usage of RPM for packaging, and prompts for more user-friendly and
localizeable installation tools. While such a possibility was not provided
by EDG, it is under development by LCG. Such user-triggered software
installation will be achieved by means of dedicated Grid jobs, down-

wp8.tex; 5/04/2004; 11:09; p.15



16 I. Augustin et al.

loading and unpacking the software from a cache to a dedicated area
on the cluster, and publishing the corresponding tag in the Information
System.

4. The current status with respect to HEPCAL use cases

In the following sub-sections we summarise the satisfaction, or other-
wise, by the EDG middleware of the 43 HEPCAL use cases. For this
purpose we have broken down the use cases into various classes.

4.1. Basic (19)

These relate to fundamental Grid operations like submitting and con-
trolling jobs, registering and replicating files, and querying the state
of the system. Of these, 15 are implemented by the EDG middleware,
although in some cases there are minor areas where the implementation
is not ideal, in particular concerning the detection and treatment of
errors and support for file metadata.

Three of the missing cases concerns the job submission system. One
specifies a variety of job control operations, including suspend/resume,
requeueing and changing priority. In the current EDG middleware the
only supported operation is cancellation, and in this case any existing
output files are lost. Two more cases involve queries. One specifies
the retrieval of information about a queued or running job, such as
position in a queue, cpu time consumed, I/O rates and volumes, and
access to the stdout and stderr files. Essentially none of this infor-
mation is currently available; the WMS only stores information about
high level state changes, and the information system does not have
information about individual jobs. The other missing query function
concerns querying the job catalogue for jobs matching a set of criteria.
The current system only supports a query specifying a submission date
and time between two points.

The final unimplemented case concerns the uploading of a file which
is known to be a replica of an existing file, and the registration of it
under the existing file identifier (GUID). This is as opposed to using the
Grid middleware itself to perform replication. Technically this use case
is achievable using low-level commands to edit the Replica Catalogue
directly, but there is no high-level support for it. The motivation for
this use case was to maintain the possibility of data being shipped on a
physical medium, but there may also be other uses, e.g. for files being
replicated between Grids using different middleware. There would be a
need to maintain integrity in such a situation, e.g. by using a checksum
to confirm that the new file is in fact a replica.

wp8.tex; 5/04/2004; 11:09; p.16



HEP Applications 17

4.2. Security (5)

Two uses cases concern the joining and leaving of a Virtual Organi-
sation (VO). These are implemented in EDG using an LDAP server
to hold VO membership lists, but this has fairly limited functional-
ity. EDG has developed the VOMS system in collaboration with the
DataTAG project, which should allow much more flexible control of
VO-based authorisation, but so far this is not fully integrated with the
other EDG middleware. A third case specifies single sign-on, which is
satisfied by the standard Globus proxy creation and will be enhanced
with the extended proxies used by VOMS.

The two final security use cases concern the advance reservation of
resources and the allocation of resources between VO members, and
these are not addressed in the current system.

4.3. Metadata (2)

Two use cases specifically involve the modification of file-related meta-
data, and performing queries to select files based on the metadata.
The EDG Replica Metadata Catalogue offers a prototype with partial
support for these use cases, but more work is needed by both application
and middleware developers in this area.

4.4. Virtual Data (2)

The virtual data concept implies that instead of storing data in a file,
a recipe to generate the data is stored in a catalogue, and the files are
materialised on demand. This was out of the scope of EDG, and is
likely to require substantial further work to implement.

4.5. Optimisation (4)

One use case concerns the evaluation of cost functions for data access
to allow the most efficient access method to be chosen. The EDG
middleware has a substantial amount of support for this concept, but
testing has been limited because the relevant network monitoring data
can only be gathered in something close to a real production system.

Two other optimisation use cases refer to job submission. One con-
cerns the specification of hints, e.g. for cpu time consumption, memory
usage or disk space needed, to allow jobs to be scheduled efficiently. This
is supported to the extent that jobs can apply their own constraints
and ranking criteria based on information stored in the information
system, but any optimisation is provided by the user rather than the
WMS. Another use case concerns the automatic splitting of jobs into

wp8.tex; 5/04/2004; 11:09; p.17



18 I. Augustin et al.

subjobs. HEP jobs generally involve the sequential processing of large
numbers of files, and hence are good candidates for splitting to balance
the load. This was one of the goals for the EDG WMS, adapting the
Condor DAGMAN software, but the functionality is not fully integrated
in the deployed system.

A final use case relates to the possibility of using remote access to a
small part of a file to avoid the overhead of complete replication. This
is not supported.

4.6. Application catalogues (4)

Four use cases concern the concept of application catalogues stored
within the Grid. EDG has provided a GSI-enabled interface to un-
derlying databases which is used, for example, for the Replica and
Metadata Catalogues, but there is no explicit support for application
databases. At present the model for files is that they are write-once and
subsequently read-only, whereas catalogues must be updatable, which
implies strong consistency requirements if catalogues are to be repli-
cated. R-GMA provides a different model for a distributed database
which may be suitable for some of the use cases, but this has not yet
been investigated.

4.7. Application interfaces (7)

The final set of use cases are at a higher level, and relate to interactions
between middleware and application software. These can generally be
achieved by implementing the functionality at the application level, but
have no specific support in the middleware.

Two relate to the submission and control of large sets of jobs treated
as a single production, e.g. to process a large number of files, and a
third relates to storing user-defined metadata about jobs in the WMS
job catalogue.

Three use cases concern specialised kinds of jobs: specification of
input data via a metadata query, verification of the functionality of
application software, and validation of the content of a dataset, either
in a standalone job or as the final stage of a data production job.

Finally, there is the question of the installation and publication of
application software. Within EDG this has been achieved by treating
application software in the same way as the middleware and incorpo-
rating it in the EDG releases, but this is not suitable as a long-term
solution.

wp8.tex; 5/04/2004; 11:09; p.18



HEP Applications 19

5. Security issues for HEP

In general HEP does not have strong security requirements, in that
data are not usually confidential or sensitive and the community of
users is relatively trustworthy. However, as with any computer systems
there is a need to protect against hackers and other forms of malicious
attack, and most sites require robust audit trails to allow the tracing of
actions by individual users. Accounting systems are also needed to allow
monitoring and enforcement of resource sharing between and within
Virtual Organisations. We touch below on two of the areas which affect
the operation of an HEP experiment.

5.1. Authorisation

Unlike many Grid applications, HEP Virtual Organisations are gen-
erally very large (hundreds or thousands of people) and long-lived
(decades), with a well-developed internal structure. This implies the
need for a relatively heavyweight authorisation management system
which emphasises functionality and scalability at the cost of a higher
administrative burden.

Authorisation is likely to be needed at a variety of granularities, from
overall permission to use a CE down to access control on individual files,
or to particular fields in the information system. There is also likely to
be a need for resource reservation, e.g. to ensure sufficient resources
for official production jobs which may need to take precedence over
individual users.

The VOMS system securely manages users within a VO, organising
them into subgroups and allowing the specification of arbitrary roles
and capabilities. This information is embedded as an extension to a
GSI proxy, and can be parsed by VOMS-aware middleware to enforce
authorisation decisions.

VOMS appears to be a promising way to solve the authorisation
needs of HEP experiments. Unfortunately integration was not finished
in the lifetime of the EDG project, so practical experience has not been
gained. This will be obtained soon in the LCG/EGEE projects.

5.2. Service proxies

Many sites wish to deny direct access to the wide-area Internet from
batch worker nodes. This is partly due to the fact that IP addresses are
a limited resource, and partly because a large Grid could otherwise be
an ideal platform from which to launch a Distributed Denial of Service

wp8.tex; 5/04/2004; 11:09; p.19



20 I. Augustin et al.

attack. Sites also want to limit the number of holes in their firewalls as
much as possible.

However, at present both middleware and application client software
requires outbound external access. This requirement could be removed
by running service proxies on gateway nodes. This could also be useful
in other ways, for example allowing retries of failing operations without
blocking the client. So far there has been little development in this
area, indeed between release 1 and release 2 of the EDG middleware
the replica management system moved away from a client-server model
to a purely client-based system.

6. Some current experience with
experiments and data challenges

Starting in July 2002 with the formation of an EDG/Atlas Task Force
there has been increasing use of EDG middleware in the production
environments of the experiments. The pioneering Atlas work solved
several serious problems asociated with both Globus and EDG software
and paved the way for the first serious production use by an experiment,
CMS, in December 2002. This work was very labour intensive requiring
a concentrated team of experts [16]. Ensuing work in 2003 [17] has
seen job efficiencies of 80-90% obtained by several experiments with a
reasonable amount of support effort. Also the EDG software has been
used in the LCG production environment with good success.

We summarise below some of the work accomplished in early 2004
by the first two experiments, ALICE [20] [23] and CMS [21], to use
the LCG service for physics production. The other LHC experiments,
Atlas [24] and LHCb [19] [22] will commence production work on LCG
in May 2004 building on their work in 2003. Also two non-LHC exper-
iments, Babar [25] and D0 [26], currently running and taking data at
SLAC and Fermilab respectively, will be using LCG for data processing.

6.1. ALICE

AliEn (ALICE Environment) is a Grid system for large scale job sub-
mission and distributed data management developed by ALICE, the
CERN LHC heavy-ion experiment. With the aim of exploiting LHC
Computing Grid resources to run AliEn-managed jobs for simulation
and reconstruction, the problem of AliEn-LCG interoperability was
addressed and an interface was designed and tested. The contact points,
acting as gateways between the two systems, are the “Interface nodes”:
LCG User Interface machines that run also, as services, the full AliEn

wp8.tex; 5/04/2004; 11:09; p.20



HEP Applications 21

site suite: Storage Element (SE), Computing Element (CE), Cluster
Monitor and File Transfer Daemon (FTD). The interface CE gets jobs
from the AliEn server and submits them to the LCG resource broker,
taking care to handle file registration and staging across the system
boundary. Therefore, a LCG Resource Broker is seen by the AliEn
server as a single Computing Element, while LCG storage is seen by
AliEn as a single, large Storage Element; files produced in LCG sites
are registered in both the LCG Replica Catalogue and in the AliEn
Data Catalogue, thus allowing access from both systems (Fig. 1).

The access to AliEn or LCG/Grid.it (Grid.it is a set of Italian sites
configured with LCG software) is fully transparent: the AliEn frontend
is used for the job configuration, while the load is automatically shared
between resources under the direct control of AliEn and resources
configured with LCG middleware.

All the files generated by a job running on an LCG site that must
be permanently stored are doubly-registered in both (AliEn and LCG)
Replica Catalogues, thus ensuring accessibility from both systems.

Whenever an output file generated by an AliEn job running on
some LCG site is to be stored and registered in the catalogue, the
CloseSE (in LCG terms) is determined by AliEn code (running on
the WN) from the .BrokerInfo file generated by the RB. The file
is then saved in the selected SE and registered in the LCG Replica
Catalogue (uniqueness of both the Logical and LCG-side Physical File
Names is enforced by AliEn). An “intermediate” file name of the form
LCG://<VO>/<LFN> is generated using the LCG Logical File Name and
the Virtual Organisation name to allow for multiple VO/RC. The file is
finally registered in the AliEn Data Catalogue using this “intermediate
FN” as Physical File Name; the file is thus seen by AliEn as “stored in
LCG”, regardless of the physical location of the LCG Storage Element
on which it resides. One advantage of this approach is that if the file
is replicated (using some of the LCG Replica Management tools) onto
another LCG Storage Element, AliEn would be able to access any of
the copies of that file without having to modify its database entry.

File accessibility is guaranteed in both directions, i.e. jobs running
on either side of the interface can access data on both systems. However,
since AliEn always tries to send a job where the needed data are, the
basic case (jobs running on LCG nodes requiring data residing in LCG
Storage Elements) is also the most common.

The interface is presently being used in production for the ALICE
Data Challenge, started in Feb., 2004. Two interface sites are con-
figured, pointing to LCG and Grid.it resources, respectively. After two
weeks of production, LCG (Grid.it) processed about 43% (12%) of data,
corresponding to a total of more than 7000 events at the LHC energy.

wp8.tex; 5/04/2004; 11:09; p.21



22 I. Augustin et al.

Figure 1. The interface job submission cycle. Jobs are configured on the AliEn
Server and pulled by the AliEn CE on the interface site. The AliEn JDL file is then
translated to a GLUE-compliant format and the job is forwarded to the LCG Re-
source Broker for submission to a LCG CE. When it starts on a LCG Worker Node,
it begins reporting about its status directly to the AliEn Server, until completion.

It should be noted that one such ALICE event comprises maybe 80
thousand particles, and typically takes 24 hours to process on a 1GHz
CPU.

6.2. CMS

During Data Challenge 2004 (DC04) CMS uses the EDG/RLS both as a
POOL catalogue (POOL is an LHC project to provide cataloguing ser-
vices to the experiments) and as a file catalogue. In general interaction
with the RLS, and in particular file registration, is done through POOL
commands. Adding or removing physical file names is done through the
Local Replica Catalogue (LRC) C++ API. File replication and deletion
is done via the tool chosen by each Tier-1. Supported tools are: the
LCG Replica Manager (RM), the Storage Resource Manager (SRM)
and the Storage Resource Broker (SRB). The registration of files was
done via the Replica Manager commands. The DC04 setup includes
an RLS catalogue at CERN and a replica of the catalogue using the
ORACLE multi-master mirroring technique at CNAF in Bologna.

The sequence of the operations on the RLS catalogue is given below.

wp8.tex; 5/04/2004; 11:09; p.22



HEP Applications 23

1. The reconstruction job runs at CERN in a local environment, using
a local XML catalogue. A dedicated agent publishes to the RLS the
new files produced by all the jobs starting from the XML file.

2. The reconstructed events are assigned for transfer to the Tier-1
regional centres by the Data Transfer Configuration agent depend-
ing on their properties, which are recorded in the RLS. All the
information on the data transfer processes is kept in a CMS dedi-
cated database (Transfer Management Database, TMDB) located
at CERN.

3. Dedicated agents copy files to the supported (RM, SRM and SRB)
data servers (Export Buffers, EB) and remove them once they have
been transferred.

4. At different Tier-1s there are agents that replicate files locally using
the preferred transfer tool. Interactions with the RLS are done by
the Replica Manager if using the RM, the GMCAT synchronisation
process if using SRB or directly by the Tier-1 transfer agent if using
SRM. In some cases a local MySQL POOL catalogue is maintained.
In this case the Tier-1 transfer agent also reads the full file record
from the RLS and publishes it to the local catalogue

5. The analysis jobs run either on local Tier-1 farms or on Grid re-
sources. When submitted via a Resource Broker a query to the RLS
is done by the RB to send the job close to the data.

6. The analysis jobs, either submitted to Grid resources or to local
farms, may use the central RLS catalogue at CERN, the RLS mirror
at CNAF or a local MySQL catalogue if available. In all cases this
process may imply the creation of local XML catalogues as done
for the CERN reconstruction.

RLS has worked well as a file catalogue, and now evaluations are
proceeding for its use together with POOL metadata stored on the
Replica Metadata catalogue(RMC). Currently some scaling issues are
being investigated.

7. Summary of the main lessons learned and
a look forward to EGEE and the development

of experiment analysis systems

Throughout the 3 years of the DataGrid project the middleware has
evolved and as of 2003 reached a level where its components for job and

wp8.tex; 5/04/2004; 11:09; p.23



24 I. Augustin et al.

data management have been successfully deployed onto a production
service for LHC computing as provided by LCG. All 6 experiments
participating in EDG have performed substantial data processing us-
ing EDG software, with job efficiencies reaching 90% in well managed
production exercises.

The following have been the main lessons drawn from the project:

− It would have been better to start with simpler prototype middle-
ware, and to have had more frequent incremental releases to the
users. The integration of middleware to form a robust, working
system has proved to be much harder than expected.

− The application groups should have worked closely with the mid-
dleware groups from the beginning, both in defining the architec-
ture and planning the testing of the prototypes. The formation of
Application/Middleware task forces from July 2002 demonstrated
the crucial nature of such organisation.

− Having an application oriented team of experts working across
applications was vital to the success of the project. This promoted
synergy within the project, and formed a vital element of the
intellectual backbone of the project.

− The information system is the nerve centre of the Grid. We look to
RGM-A to provide the long term solution to the scaling problems
encountered with MDS.

− Site configuration and certification must be automated. Improp-
erly configured sites are a major factor in job losses in the Grid.
Middleware needs to be fault-tolerant and self-correcting in the
face of configuration problems and other errors.

− Similarly space management on SEs and WNs remain a serious
souce of residual problems affecting overall efficiency.

− The applications await a stable uniform mass storage interface.
It is expected that this will be provided by SRM implementa-
tions, supplemented by GFAL (Grid File Access Library) allowing
application access to Grid files.

− The applications need flexible schemes for individual user software
installation on the Grid. The RPM scheme is too inflexible for
individual use.

The project has collectively taken note of these lessons, and this
input is being carried forward into the EGEE project where there will

wp8.tex; 5/04/2004; 11:09; p.24



HEP Applications 25

be a HEP applications group acting as part of an overall applications
activity. In addition to the ongoing data challenges there will be de-
velopments of the LHC experiments analysis models which must cope
with the use of the Grid by thousands of individual users. This poses
special problems of random demands for data and CPU resources, all
to be managed within the context of the VOs and their policies. The
HEPCAL use case work has been extended [12], taking account of
new requirements arising from individual user analyses, for example
the management of interactive sessions, tracking the provenance of data
though many transformations, and the provision of query facilities for
data selection from vast datasets.

Acknowledgements

We wish to acknowledge the support of the EU and our national funding
agencies. We would also like to acknowledge the excellent relations
HEP application have had with the Project Office, the middleware and
testbed groups and our other application colleagues in Biomedicine and
Earth Sciences.

Throughout our work our working colleagues within LCG and the
experiments have been fully cooperative in the accomplishment of com-
mon goals.

References

1. Large Hadron Collider
http://user.web.cern.ch/user/Index/LHC.html

2. CERN
http://user.web.cern.ch/user/cern.html

3. EU DataGrid project
http://eu-datagrid.web.cern.ch/eu-datagrid/

4. LHC Computing Grid project
http://lcg.web.cern.ch/LCG/default.htm

5. Objectivity database
http://www.objectivity.com/

6. Oracle database
http://www.oracle.com/

7. GLUE schema – conceptual model and implementation, CHEP03
http://datatag.web.cern.ch/datatag/presentations/chep2003a.ppt

8. Relational Grid Monitoring Architecture
http://www.r-gma.org/

9. GridIce – DataTAG system for grid monitoring
http://server11.infn.it/gridice/

10. Local ConFiGuration system
http://www.lcfg.org

wp8.tex; 5/04/2004; 11:09; p.25



26 I. Augustin et al.

11. Common Use Cases for A HEP Common Application Layer (HEPCAL)
http://lcg.web.cern.ch/LCG/sc2/RTAG4/finalreport.doc

12. Common Use Cases for a HEP Common Application Layer for analysis -
HEPCAL II
http://lcg.web.cern.ch/LCG/sc2/GAG/HEPCAL-II.doc

13. LHC requirements for GRID middleware,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/pres/285.PPT

14. DataGrid User Requirements and Specifications for the DataGrid Project,Sep
2001
https://https://edms.cern.ch/document/332409

15. Testbed1 assessment by HEP applications,Feb 2002
https://https://edms.cern.ch/document/334920

16. Testbed2 assessment by HEP applications,April 2003
https://edms.cern.ch/document/375586

17. Final HEP Application Testbed evaluation,Dec 2003
https://edms.cern.ch/document/428171

18. HEP Applications evaluation of the EDG Testbed and Middleware,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/THCT003.PDF

19. DIRAC Distributed Implementation with Remote Agent Control,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUAT006.PDF

20. ALICE experience with EDG,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOCT002.PDF

21. Running CMS software on Grid Testbeds,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOCT010A.PDF

22. Ganga: The ATLAS and LHCb User Interface to the Grid,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUCT002.PDF

23. AliEn - EDG interoperability in ALICE,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUCP005.PDF

24. ATLAS Data Challenge 1,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOCT005.PDF

25. Use of the European Data Grid software in the framework of the Babar dis-
tributed computing model,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOCT004.PDF

26. DZero breaks new ground in global computing efforts,Fermi News, Volume 27,
February 2004 http://www-d0.fnal.gov/computing/reprocessing/

27. The GENIUS Grid portal,CHEP03
http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUCT001.PDF

Appendix

A. Glossary of terms and acronyms

Alice: An LHC experiment.

Analysis: Processing reconstructed data to test physics theories. This
may be an organised production or may be chaotic processing by
individuals.

wp8.tex; 5/04/2004; 11:09; p.26



HEP Applications 27

Atlas: An LHC experiment.

BaBar: An experiment at SLAC.

BDII: Berkeley Database Information Index. An LDAP server backed
by a Berkeley Database which provides information according to
the GLUE schema, and is populated by regular queries to infor-
mation providers at each site.

Calibration: The response of detectors must be calibrated, for exam-
ple to allow a signal level to be converted into a particle energy.
Calibration constants are usually stored in databases.

Catalogue: A read/write collection of data (typically one or more
databases).

CE: Computing Element, a Grid-enabled computing resource. In EDG
a CE is mapped to a queue in a batch system.

CERN: The European particle physics laboratory in Geneva.

Classic SE: An SE with no management middleware. Supports GridFTP
for data transfer.

CMS: An LHC experiment.

CNAF: An HEP laboratory in Bologna which hosts a large computing
facility.

Condor: A US project which provides tools for job matching and
submission.

D0: An experiment at Fermilab.

DAG: A Directed Acyclic Graph, allowing dependencies between jobs
to be specified.

DAGMAN: Condor Middleware which manages sets of jobs defined
with DAGs.

Data Challenges: In advance of the startup of the LHC in 2007
experiments are performing a series of increasingly large scale ex-
ercises to ensure that computing models and systems are able to
cope with the expected data volumes and rates.

DataTAG : An EU project closely related to EDG.

wp8.tex; 5/04/2004; 11:09; p.27



28 I. Augustin et al.

Digitisation: Part of the Simulation process, which takes simulated
particles traversing the experiments, simulates the response of de-
tector elements and produces digitised output in the same format
as from the real detectors.

DMS: Data Management System, the middleware which provides high-
level data management functions.

DS: Dataset, a collection of read-only data (typically a set of files).

EDG: The European DataGrid project, an EU project which ran for
three years from 2001-04.

EGEE: Enabling Grids for E-science in Europe, the successor project
to EDG.

Event: The set of particles emerging from a single collision of two
incoming particles in a detector. Also the digitised data resulting
from such a collision.

File Catalogue: A Catalogue which incorporates one or more Replica
Catalogues together with middleware-level Metadata to allow man-
agement of files.

Fermilab: An HEP laboratory near Chicago.

GGF: The Global Grid Forum.

GDMP: The Grid Data Mirroring Protocol. Middleware which pro-
vides automatic file replication via subscription between pairs of
Storage Elements.

GFAL: Grid File Access Library. Middleware developed by the LCG
project to allow transparent access to files stored on the Grid.

Globus: A US Grid project which provides the foundation middleware
for EDG.

GLUE: Grid Laboratory for a Uniform Environment, a joint project
between EDG and US HEP Grid projects to define standards
to enable interoperability, in particular a common information
schema.

GMA: The Grid Monitoring Architecture, defined by the GGF, which
allows data consumers to locate data producers using a registry.

GMCAT: Part of the SRB DMS.

wp8.tex; 5/04/2004; 11:09; p.28



HEP Applications 29

GridFTP: Grid File Transfer Protocol. The Globus Grid extensions
to the standard FTP protocol.

Grid map file: A file used to map GSI credentials to local Unix ac-
counts.

GSI: Grid Security Infrastructure. The Globus middleware which pro-
vides the basic security framework.

GUID: Globally Unique IDentifier, a system-generated identifier which
is guaranteed (or highly likely) to be unique.

HEP: High Energy Physics (particle physics).

HEPCAL: An LCG document specifying a number of Grid Use Cases
for HEP applications.

IS: Information System, Grid-enabled middleware for the distribution
of information.

JDL: Job Description Language, uses the Condor Classads library to
describe job characteristics and requirements.

Job Catalogue: A Catalogue containing information for each job man-
aged by the WMS.

LB: The EDG Logging and Bookkeeping system which manages infor-
mation about the lifcycle of a job.

LCFG(ng): Local ConFiGuration (next generation), an installation
and configuration tool developed by EDG from a system written
at Edinburgh Univ.

LCG: The LHC Computing Grid project, which will provide the com-
puting infrastructure for the LHC.

LDAP: Lightweight Directory Access Protocol. A protocol for retrieval
of hierarchically-structured data.

LDIF: LDAP Data Interchange Format. A standard textual represen-
tation of data used in LDAP.

LDN: Logical Dataset Name, a unique name referring to a Dataset.

LFN: Logical File Name, a user-defined name for a single file.

wp8.tex; 5/04/2004; 11:09; p.29



30 I. Augustin et al.

LHC: The Large Hadron Collider, the next generation of particle ac-
celerators, located at CERN and due to start operation in 2007.
There will be four large particle detectors, called Alice, Atlas, CMS
and LHCb.

LHCb: An LHC experiment.

LSF: Load Sharing Facility, a batch scheduler.

MDS: Monitoring and Discovery Service. The Globus middleware to
provide a Grid Information System, based on LDAP.

Metadata: Data which describe or relate to the content of a file or
Dataset.

Metadata Catalogue: A Catalogue which stores application-defined
Metadata and allows the selection of Datasets via queries.

Monte Carlo: Simulation of particle collisions and the response of
particle detectors using random numbers.

Production: An organised processing to produce a large number of
simulated or reconstructed data files.

MSS: Mass Storage System, a large-scale managed storage facility,
typically incorporating a tape storage robot.

OpenBSD: An open-source version of the BSD Unix OS.

OS: Operating System.

PBS: Portable Batch System, a batch scheduler.

POOL: An LCG project to develop high-level Dataset Catalogues
and management tools for the LHC experiments, which has been
interfaced with the EDG RM.

Raw Data: The digitised output from particle detectors, or a simula-
tion thereof.

RB: Resource Broker, the EDG middleware which matches jobs with
resources.

Reconstruction: Processing of raw data from either real or simulated
events to reconstruct the underlying trajectories and energies of
particles.

wp8.tex; 5/04/2004; 11:09; p.30



HEP Applications 31

R-GMA: Relational Grid Monitoring Architecture, an implementa-
tion of the GMA developed within EDG which uses a relational
data model.

Replica: A physical instance of a file.

Replica Catalogue: A Catalogue which stores the location of Repli-
cas.

RLS: Replica Location System, a model for distributed Replica Cata-
logues implemented by both EDG and Globus.

RM: Replica Manager, the EDG DMS.

RPM: RedHat Package Manager, a file packaging tool developed by
RedHat. Also the format of packages produced by the tool.

Sandbox: A set of files transferred to a WN with a job (input sandbox)
or retrieved from the WN when the job finishes (output sandbox).

SE: Storage Element, a Grid-enabled storage system.

SLAC: An HEP laboratory in California.

SRB: Storage Resource Broker, a non-EDG DMS.

SRM: Storage Resource Manager, a Grid-enabled protocol for the
management of an SE.

SURL: Site URL, a URL which refers to a Replica stored in an SE.

Tier 1: The major computer centres providing resources to LCG.

Tier 2: Local LCG computer centres, generally providing fewer re-
sources and lower levels of support than Tier 1 centres.

Trigger: A hardware or software algorithm to select interesting events
for permanent storage.

TURL: Transfer URL, a URL which enables a Replica to be read or
written using a specific transfer protocol.

UI: User Interface, a machine with client software installed from which
a user can submit jobs, manage data and query the Information
System.

Virtual Data: Data generated on demand using a known algorithm.

wp8.tex; 5/04/2004; 11:09; p.31



32 I. Augustin et al.

VO: Virtual Organisation. In HEP these are expected to correspond to
the experimental collaborations, typically with hundreds or thou-
sands of members.

VOMS: Virtual Organisation Management System, a set of middle-
ware to manage VO membership and authorisation information.

WMS: Workload Management System, the middleware which pro-
vides high-level management of computing jobs.

WN: Worker Node, a machine on which a job can run, usually via a
batch system.

wp8.tex; 5/04/2004; 11:09; p.32


