The CASCADE Monte Carlo generator with CCFM parton evolution

H. Jung, DESY

HERA - LHC workshop, MC tools WG, Startup Meeting CERN, March 2004

- the problem at HERA and Tevatron
 - k_t -factorisation CCFM
- lacksquare the model for pp
 - applied to heavy quark production
 - applied to minimum bias
 - applied to Higgs at LHC
- conclusion

processes of $\mathcal{O}>\alpha_s^3$ have not been calculated explicitely

interesting close to proton region forward jets !!!

Basic idea - k_t factorisation

CCFM (one loop)

angular ordering

BGF matrix element off mass shell

evolution of parton cascade with DGLAP splitting fct.

$$\tilde{P} = \bar{\alpha}_s \left(\frac{1}{1-z} + \frac{1}{z} \right)$$

initial distribution:

$$\sigma(ep \to e'q\bar{q}) = \int \frac{dy}{y} d^2Q \frac{dx_g}{x_g} \int d^2k_t \hat{\sigma}(\hat{s}, k_t, Q) x_g \mathcal{A}(x_g, k_t, \bar{q})$$
with $\int d^2k_t x_g \mathcal{A}(x_g, k_t, \bar{q}) \simeq x_g G(x_g, Q^2)$

Basic idea - k_t factorisation

BGF matrix element off mass shell

evolution of parton cascade with CCFM splitting fct.

$$\tilde{P} = \bar{\alpha}_s \left(\frac{1}{1-z} + \frac{1}{z} \Delta_n^s \right)$$

initial distribution: flat

$$\sigma(ep \to e'q\bar{q}) = \int \frac{dy}{y} d^2Q \frac{dx_g}{x_g} \int d^2k_t \hat{\sigma}(\hat{s}, k_t, Q) x_g \mathcal{A}(x_g, k_t, \bar{q})$$
with $\int d^2k_t x_g \mathcal{A}(x_g, k_t, \bar{q}) \simeq x_g G(x_g, Q^2)$

CCFM (all loops)

- angular ordering (instead of q_t ordering)
- $m{\triangle}$ Δ_{ns} (non Sudakov)

Advantage of CCFM: parton emissions

- DGLAP or BFKL
- only inclusive predictions
- no info on emitted partons
- CCFM treats explicitely: partons emitted during cascade color coherence energy momentum conservation
- best to implement in MC generator
- compare evolution and MC
- unintegrated parton densities
- CASCADE MC generator

evolution - MC parton shower comparison never shown for DGLAP type MC's!!!

The Monte Carlo Generator CASCADE

- hard scattering processes included:

$$lack \gamma g^* o qar q$$
 , $\gamma^*g^* o Qar Q$, $\gamma g^* o J/\psi g$

- lacksquare $\gamma\gamma o Qar Q$
- $lack g^*g^* o qar q$, $g^*g^* o Qar Q$, $g^*g^* o h$
- initial state parton cascade acc. to CCFM with angular ordering
- final state parton showers from quarks
- riangleq P-remnant treatment like in Pythia (q-di-q, primordial k_t)
- hadronization via Jetset/Pythia
- **1st attempts to multiple scatterings**

CASCADE is MC implementation of CCFM for $ep, ee, \gamma\gamma$ and also for $p\bar{p}$

Precision fits to $F_2(x,Q^2)$

With
$$\sigma = \int dk_t^2 dx_g \mathcal{A}(x_g, k_t^2, \bar{q}) \sigma(\gamma^* g^* \to q\bar{q})$$
 fit $F_2(x, Q^2)$

more precise data:

H1 NPB 470 (1996) 3., EPJ 21 (2001) 331.
ZEUS ZPC 72 (1996) 399., EPJ 21 (2001) 443.

- fit $Q^2 > 4.5 \text{ GeV}^2$, x < 0.005
- ullet small k_t region ?
- full splitting function?

Fits to $F_2(x,Q^2)$		
set	k_t^{cut}	χ^2/ndf
	(GeV)	ndf = 248
$k_t^{cut} = Q_0$	1.33	1.29
full splitting	1.18	1.18
JS2001	0.25	4.8

Un-integrated gluon density

- use H1 + ZEUS F_2 data (from 94 and 96-97)
- fit for $x < 0.01 \ Q^2 > 3.5 \ {\rm GeV^2}$
- fit normalization in initial pdf $xA_0 = N(1-x)^4$
- fit collinear cut Q_0 and starting scale
- treatment of soft region no k_t ordering
 diffusion into soft
- full splitting function (including non-sing. terms)
- all-loop splitting fct (CCFM) (including non-Sudakov)
- one-loop splitting fct (DGLAP) steeper rise towards small x

 $\bar{q} = 10 \text{ GeV}$

CASCADE with **CCFM**: the solution ...

Solve CCFM equation to fit F_2 data from HERA

- obtain CCFM un-integrated gluon
 CASCADE MC implements CCFM:
- predict fwd jet x-section at HERA
- predict charm at HERA
- predict bottom at HERA
- test universality of un-integrated gluon density from HERA
- predict bottom at Tevatron
- w/o additional free parameters

WOW !!!

The model for heavy quarks in pp

apply model to charm and bottom production at Tevatron

The model for heavy quarks in pp

apply model to charm and bottom production at Tevatron

NLO, NNLO and k_t - factorization in pp

- k_t factorization
- > NLO corrections
- > even in NLO
- **➤includes NNLO**
- **➤includes NNNLO**
- **➤includes NNNNLO**
- k_t factorization has no problem with:
- ➤ negative weights....
- > matching to PS
- ➤ matching to hadronsiation

1st step: $b ar{b}$ production at Tevatron

Test universality of unintegrated gluon density from HERA

- \blacktriangleright use unintegrated gluon as before (from F_2 fit at HERA)
- ightharpoonup use off-shell matrix element for $g^*g^* o b\bar{b}$ with $m_b=4.75$ GeV.

NOTE NLO off by factor 2

CASCADE w/o additional free parameters

Why does k_t -factorization help for $b\bar{b}$ production at Tevatron

estimate higher order corrections

Nr of gluons with $p_t > p_t^{b(\bar{b})}$

LO: $\mathcal{O}(\alpha_s^2) \to N_g = 0$

NLO: $\mathcal{O}(\alpha_s^3) \to N_g = 1$

NNLO: $\mathcal{O}(\alpha_s^4) \to N_g = 2$

....

CASCADE $\rightarrow \mathcal{O}(\alpha_s^6)$

Cascade with k_t factorization for estimation of higher order corrections

The model for min.bias and jets in pp

2nd step:

- apply model to min. bias ???
- ullet use light quark masses $m_q=0.25~{
 m GeV}$
- \blacksquare as used for fit to F_2
- ullet no \hat{p}_t cut needed!!!

 $g^*g^* o qar q$ anywhere in chain ...

The model for min.bias and jets in pp

2nd step:

- apply model to min. bias ???
- use light quark masses $m_q=0.25~{\rm GeV}$
- \blacksquare as used for fit to F_2
- ullet no \hat{p}_t cut needed!!!
 - $g^*g^* o qar q$ anywhere in chain ...

- different sets of unintegrated gluon give similar x-sect.
- ullet no k_t cut, no p_t cut
- ightharpoonup non- k_t ordered emissions

The model for min.bias and jets in pp

2nd step:

- apply model to min. bias ???
- ullet use light quark masses $m_q=0.25~{
 m GeV}$
- \blacksquare as used for fit to F_2
- lacksquare no \hat{p}_t cut needed!!!

 $g^*g^* o qar q$ anywhere in chain ...

- $rightharpoonup is <math>g^*g^* o qar q$ enough ???
- is gluon ladder enough ???
- multiple interactions ????
- how large is parton x-sect ???

• what about $g^*g^* o gg$?

(G. Obrant working on that)

- partially already in cascade
- but no timelike shower in cascade
- k_t effects included \blacksquare

Minijets at $\sqrt{s} = 1800$ GeV: ϕ and transverse jets

Minijets parton level

$$p_t > 5 \text{ GeV}$$
$$|\eta| < 3$$

$$\Delta\phi=$$
 $\phi_{
m leading}-\phi_{
m jets}$ transverse: $60^o<\Delta\phi<120^o$

- ightharpoonup finite k_t -effects visible in $\Delta \phi$
- k_t factorisation approach predicts difference to DGLAP:
- \blacksquare CASCADE predicts ϕ de-correlation without multiple scattering !!!

40

- search for Higgs ...
- m D basic process: LO $\mathcal O(lpha_s^2)$ gg ightarrow Higgs

- search for Higgs ...
- m D basic process: LO $\mathcal O(lpha_s^2)$ gg ightarrow Higgs
- NLO $\mathcal{O}(\alpha_s^3)$

- search for Higgs ...
- basic process: LO $\mathcal{O}(\alpha_s^2)$ gg \to Higgs
- lacksquare NLO $\mathcal{O}(\alpha_s^3)$
- NNLO $\mathcal{O}(\alpha_s^4)$ not yet calculated

- search for Higgs ...
- basic process: LO $\mathcal{O}(\alpha_s^2)$ gg \rightarrow Higgs
- lacksquare NLO $\mathcal{O}(\alpha_s^3)$
- NNLO $\mathcal{O}(\alpha_s^4)$ not yet calculated
- NNNLO $\mathcal{O}(\alpha_s^5)$ not yet calculated
- available only: NLO + NNLL resummation....
 Bozzi et al (PLB 564 (2003) 65, hep-ph/0302104)

- search for Higgs ...
- basic process: LO $\mathcal{O}(\alpha_s^2)$ gg o Higgs
- lacksquare NLO $\mathcal{O}(\alpha_s^3)$
- NNLO $\mathcal{O}(\alpha_s^4)$ not yet calculated
- NNNLO $\mathcal{O}(\alpha_s^5)$ not yet calculated
- available only: NLO + NNLL resummation....
 Bozzi et al (PLB 564 (2003) 65, hep-ph/0302104)
- lacksquare calculate gg o Higgs in k_t factorisation
- ullet small x approximation and for for $m_t o \infty$ F. Hautmann, PLB 535 (2002) 159
- obtain NNLO correction to gluon-gluon x-section for $x \ll 1$
- estimate higher order corrections ...
- get resummation to all orders

Higgs production at LHC - a typical k_t -factorization process ?????

• k_t -factorization: $E_{
m gluon} \sim k_t$

- $E_{\rm gluon} \sim 10^{-2} \cdots 10^{-3} \cdot 7000$ GeV compared to mean $k_t \sim \mathcal{O}(15 \text{ GeV})$
- \blacksquare k_t cannot be neglected as usually done in DGLAP...

- use new matrix element (off-shell)
 F. Hautmann, PLB 535 (2002) 159
- calculate q_T spectrum with CCFM unintegrated gluon: two sets, both determined from HERA
- sensitive to trans. mom. of gluons

- new approach to calculate Higgs prod. at LHC
- important for x-section estimate
- different result than NLO ...
- better constrain unintegrated gluon ...

- use new matrix element (off-shell)
 F. Hautmann, PLB 535 (2002) 159
- calculate q_T spectrum with CCFM unintegrated gluon: two sets, both determined from HERA
- sensitive to trans. mom. of gluons
- up to now only gluon initiated cascades
- BUT, what about quark initiated cascades?

- new approach to calculate Higgs prod. at LHC
- important for x-section estimate
- different result than NLO ...
- better constrain unintegrated gluon ...

- ullet gluon density at $ar q=m_{f higgs}$
- on gluon chains included

what about ?

- gluon densities different at large scales
- include also quark chains ???

unintegrated quarks?

Conclusions

- k_t -factorisation applied to $p\bar{p}$
- ullet no p_t cuts needed
- $lap{rel}$ off shell ME's and light quark masses from HERA F_2 fits
- only gluon chains included ... already successful
- \blacksquare what about $g^*g^* \to gg$, worry about quarks ????
- approach works well for heavy quarks at Tevatron
- CCFM and CASCADE describe most data at HERA, whereas DGLAP based models don't...
- Higgs at LHC ... promising, but also x-sects, shapes ???
- attempt to include multiple scatterings romising

CASCADE (k_t - factorisation with CCFM gluon)

for min bias, heavy quarks ... and Higgs ...

- including color coherence effects in multi-gluon emissions
- angular ordering of emission angles:

- ordering in q (DGLAP) implies also angular ordering
- unification of DGLAP and BFKL

for small z no restriction in q: \blacktriangleleft random walk in q

- including color coherence effects in multi-gluon emissions
- angular ordering of emission angles:

- ordering in q (DGLAP) implies also angular ordering
- unification of DGLAP and BFKL

₩OW

for small z no restriction in q: \blacktriangleleft random walk in q

- including color coherence effects in multi-gluon emissions
- angular ordering of emission angles:

- ullet ordering in q (DGLAP) implies also angular ordering
- unification of DGLAP and BFKL

₩OW

for small z no restriction in q: \blacktriangleleft random walk in q

Non-Sudakov and all - loop resummation

Splitting Fct:
$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

Non - Sudakov form factor ➤ all loop resummation:

$$\begin{split} \Delta_{\text{ns}} &= \exp\left[-\bar{\alpha}_s(k_t^2) \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z' q_t) \right] \\ \Delta_{\text{ns}} &= 1 + \left(-\bar{\alpha}_s(k_t^2) \int \frac{dz'}{z'} \int \frac{dq^2}{q^2} \right)^1 + \frac{1}{2!} \left(-\bar{\alpha}_s(k_t^2) \int \frac{dz'}{z'} \int \frac{dq^2}{q^2} \right)^2 \dots \end{split}$$