
Parton Distribution Functions:

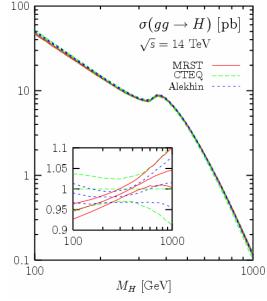
from HERA to LHC

antidown
strange
charm
gluon

0.8

0.4

0.4


0.2

MRST2001
Q² = 10 GeV²
10⁻³ 10⁻² 10⁻¹ 10⁰
X

down antiup

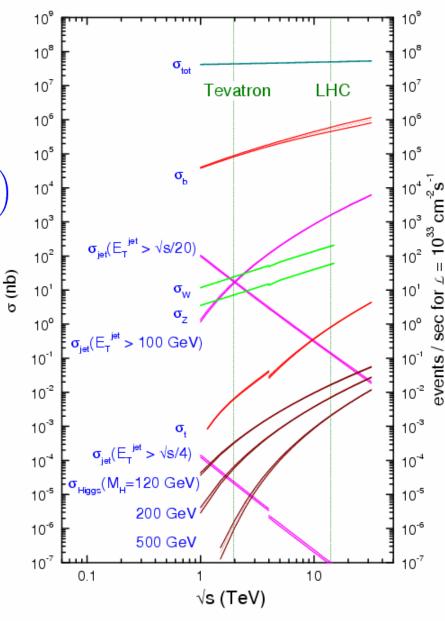
10

James Stirling (IPPP Durham)
CERN, 26 March 2004

pdfs at LHC

• high precision (SM and BSM) cross section predictions require precision pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + \dots$

- 'standard candle' processes (e.g. σ_z) to
 - check formalism
 - measure machine luminosity?
- learning more about pdfs from LHC measurements (e.g. high-E_T jets → gluon, W+/W- → sea quarks)


QCD factorization theorem for shortdistance inclusive processes

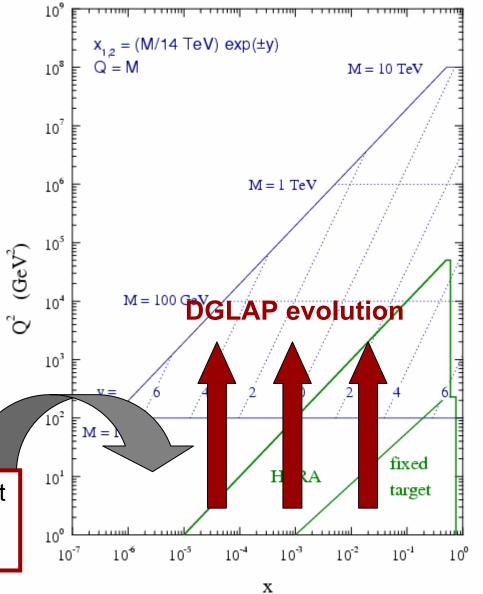
$$\begin{split} \sigma_X &=& \sum_{\mathbf{a},\mathbf{b}} \int_0^1 \mathbf{d}\mathbf{x}_1 \mathbf{d}\mathbf{x}_2 \; \mathbf{f}_\mathbf{a}(\mathbf{x}_1,\mu_F^2) \; \mathbf{f}_\mathbf{b}(\mathbf{x}_2,\mu_F^2) \\ &\times & \hat{\sigma}_{\mathbf{a}\mathbf{b}\to X} \left(\mathbf{x}_1,\mathbf{x}_2,\{\mathbf{p}_\mathbf{i}^\mu\};\alpha_S(\mu_R^2),\alpha(\mu_R^2),\frac{\mathbf{Q}^2}{\mu_R^2},\frac{\mathbf{Q}^2}{\mu_F^2}\right) \end{split}$$

where X=W, Z, H, high- E_T jets, ... and $\mathring{\sigma}$ known

- to some fixed order in pQCD and EW
- in some leading logarithm approximation (LL, NLL, ...) to all orders via resummation

now: NLO pQCD 'soon': NNLO

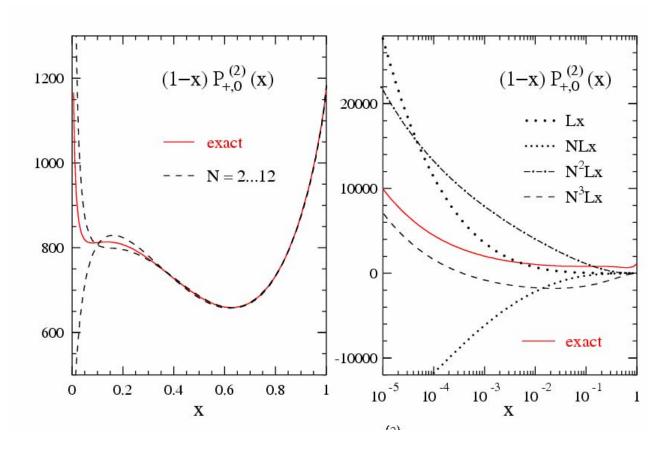
proton - (anti)proton cross sections


momentum fractions x_1 and x_2 determined by mass and rapidity of X

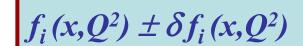
x dependence of $f(x,Q^2)$ determined by fit to data, Q^2 dependence determined by **DGLAP** equations:

$$\begin{array}{lcl} \frac{\partial \mathbf{q_i}(\mathbf{x}, \mathbf{Q}^2)}{\partial \log \mathbf{Q}^2} & = & \frac{\alpha_\mathbf{S}}{2\pi} \int_x^1 \frac{d\mathbf{y}}{\mathbf{y}} \Big\{ \mathbf{P_{q_i q_j}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{q_j}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \\ & & + \mathbf{P_{q_i g}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{g}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \Big\} \\ \frac{\partial \mathbf{g}(\mathbf{x}, \mathbf{Q}^2)}{\partial \log \mathbf{Q}^2} & = & \frac{\alpha_\mathbf{S}}{2\pi} \int_x^1 \frac{d\mathbf{y}}{\mathbf{y}} \Big\{ \mathbf{P_{gq_j}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{q_j}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \\ & & + \mathbf{P_{gg}}(\mathbf{y}, \alpha_\mathbf{S}) \ \mathbf{g}(\frac{\mathbf{x}}{\mathbf{y}}, \mathbf{Q}^2) \Big\} \end{array}$$

Q. is NLO (or NNLO) DGLAP sufficient at small x? Are higher-orders $\sim \alpha_S^n \log^m x$ important?


LHC parton kinematics

Full 3-loop (NNLO) non-singlet DGLAP splitting function!


Moch, Vermaseren and Vogt, hep-ph/0403192

pdfs from global fits

Formalism

NLO DGLAP MSbar factorisation Q_0^2 functional form @ Q_0^2 sea quark (a)symmetry etc.

 $\alpha_S(M_Z)$

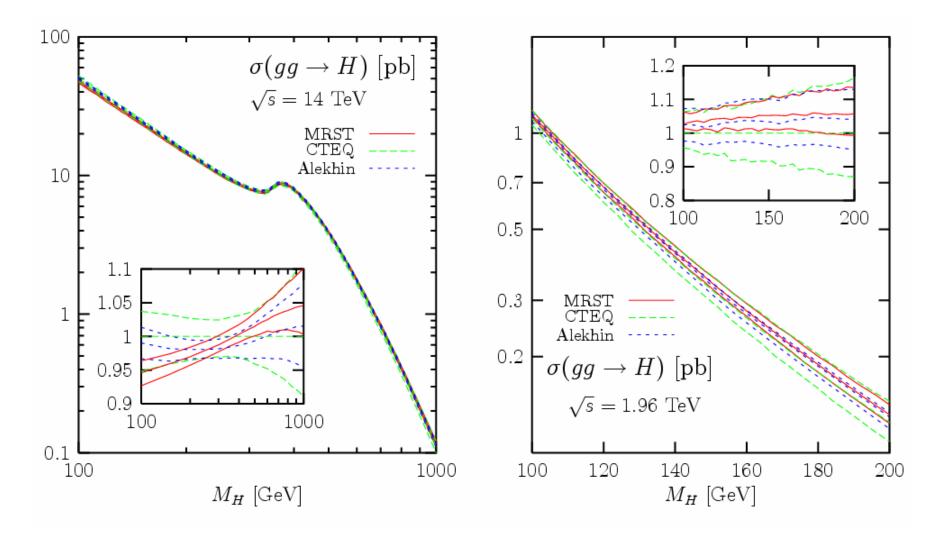
<u>Data</u>

DIS (SLAC, BCDMS, NMC, E665, CCFR, H1, ZEUS, ...)

Drell-Yan (E605, E772, E866, ...)

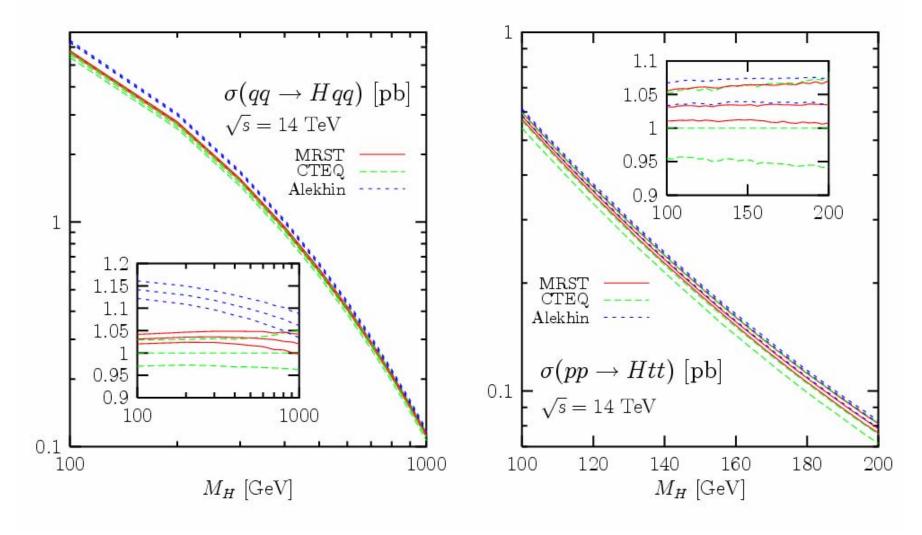
High E_T jets (CDF, D0)

W rapidity asymmetry (CDF) vN dimuon (CCFR, NuTeV) etc.


Who?

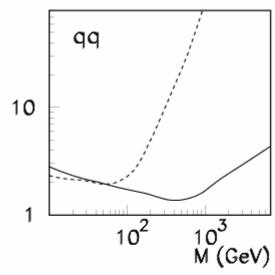
Alekhin, CTEQ, MRST, GGK, Botje, H1, ZEUS, GRV, BFP, ...

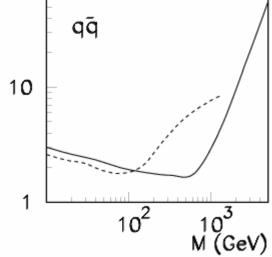
http://durpdg.dur.ac.uk/hepdata/pdf.html



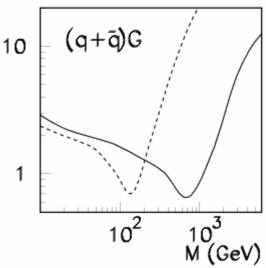
Djouadi & Ferrag, hep-ph/0310209

Djouadi & Ferrag, hep-ph/0310209

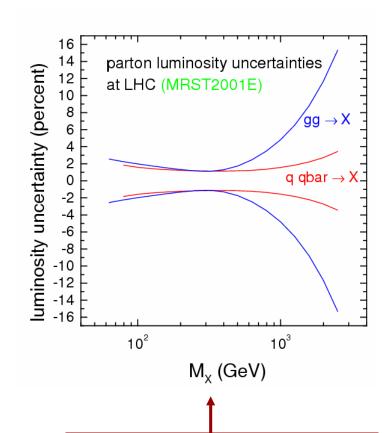


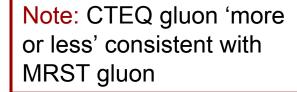


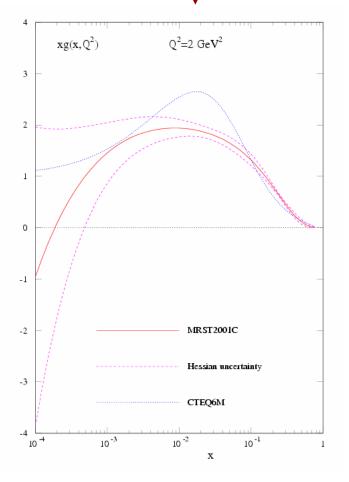
10³ M (GeV)



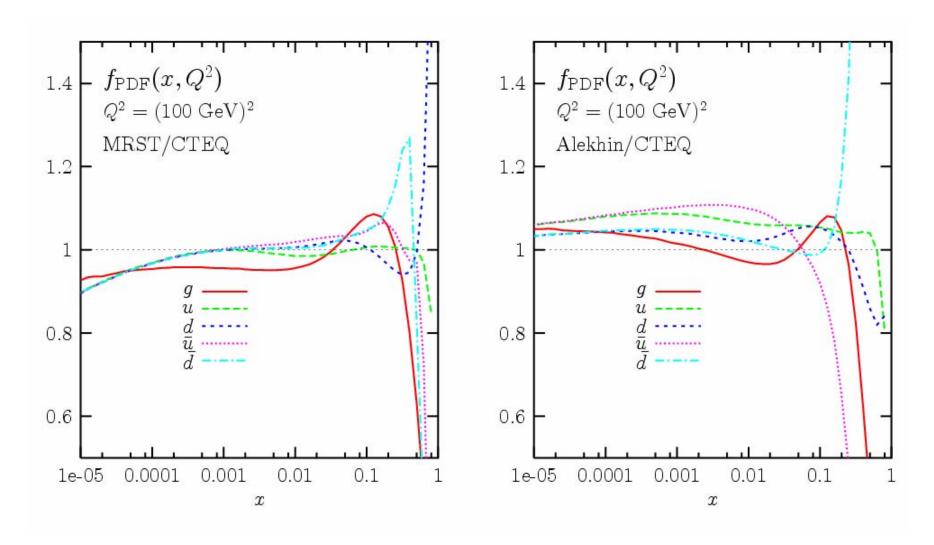
GG


10²


pdf uncertainties encoded in parton-parton *luminosity functions*


> solid = LHC dashed = Tevatron Alekhin 2002

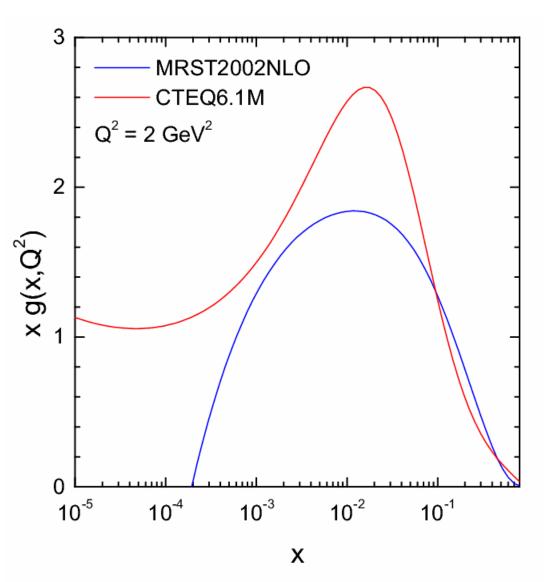
Note: high-x gluon should become better determined from Run 2 Tevatron data Q. by how much?



why do 'best fit' pdfs and errors differ?

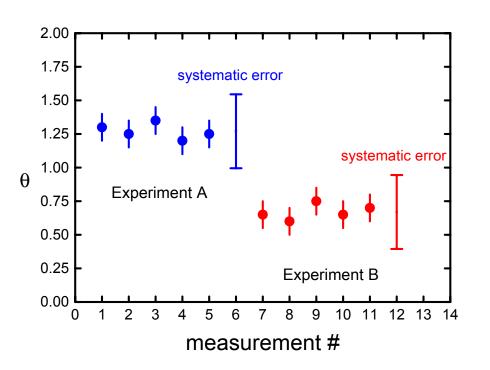
- different data sets in fit
 - different subselection of data
 - different treatment of exp. sys. errors
- different choice of
 - tolerance to define $\pm \delta f_i$ (CTEQ: $\Delta \chi^2 = 100$, Alekhin: $\Delta \chi^2 = 1$)
 - factorisation/renormalisation scheme/scale
 - $-Q_0^2$
 - parametric form $Ax^a(1-x)^b[...]$ etc
 - $-\alpha_s$
 - treatment of heavy flavours
 - theoretical assumptions about $x \rightarrow 0, 1$ behaviour
 - theoretical assumptions about sea flavour symmetry
 - evolution and cross section codes (removable differences!)
 - → see talks in PDF Working Group!

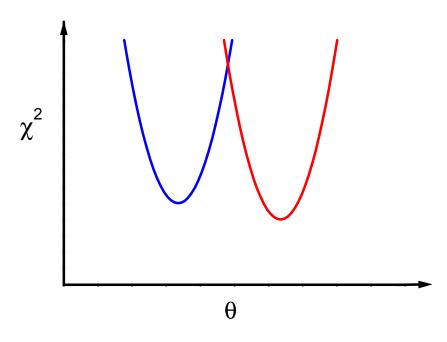
Djouadi & Ferrag, hep-ph/0310209



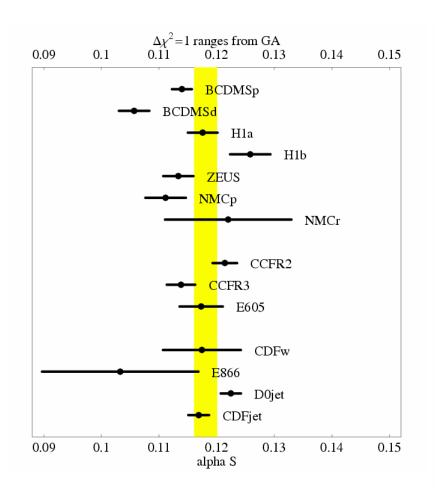
• MRST: $Q_0^2 = 1 \text{ GeV}^2$, $Q_{\text{cut}}^2 = 2 \text{ GeV}^2$

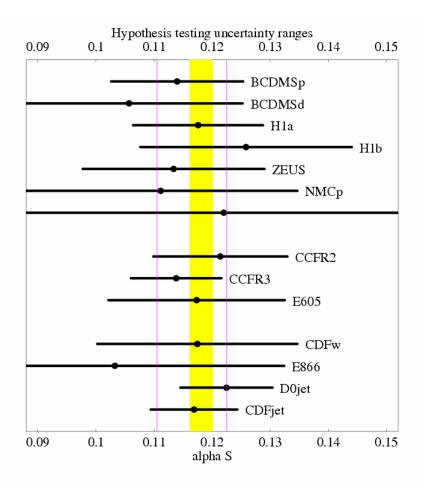
$$xg = Ax^{a}(1-x)^{b}(1+Cx^{0.5}+Dx)$$
$$-Ex^{c}(1-x)^{d}$$


• CTEQ6: $Q_0^2 = 1.69 \text{ GeV}^2$, $Q_{cut}^2 = 4 \text{ GeV}^2$


$$xg = Ax^{a}(1-x)^{b}e^{cx}(1+Cx)^{d}$$

tensions within the global fit?





- with dataset A in fit, $\Delta \chi^2 = 1$; with A and B in fit, $\Delta \chi^2 = ?$
- 'tensions' between data sets arise, for example,
 - between DIS data sets (e.g. μH and νN data)
 - when jet and Drell-Yan data are combined with DIS data

CTEQ $\alpha_{\rm S}({\rm M}_7)$ values from global analysis with $\Delta \chi^2 = 1$, 100

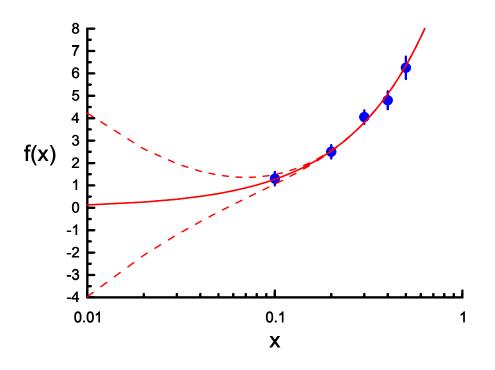
as small x data are systematically removed from the MRST global fit, the quality of the fit improves until stability is reached at around $x \sim 0.005$ (MRST hep-ph/0308087)

Q. Is fixed—order DGLAP insufficient for small-x DIS data?!

Δ = improvement in χ^2 to remaining data / # of data points removed

x_{cut} :	0	0.0002	0.001	0.0025	0.005	0.01
# data points	2097	2050	1961	1898	1826	1762
$lpha_S(M_Z^2)$	0.1197	0.1200	0.1196	0.1185	0.1178	0.1180
$\chi^2(x>0)$	2267					
$\chi^2(x > 0.0002)$	2212	2203				
$\chi^2(x > 0.001)$	2134	2128	2119			
$\chi^2(x > 0.0025)$	2069	2064	2055	2040		
$\chi^2(x > 0.005)$	2024	2019	2012	1993	1973	
$\chi^2(x > 0.01)$	1965	1961	1953	1934	1917	1916
Δ_i^{i+1} 0.19 0.10 0.24 0.28 0.02						

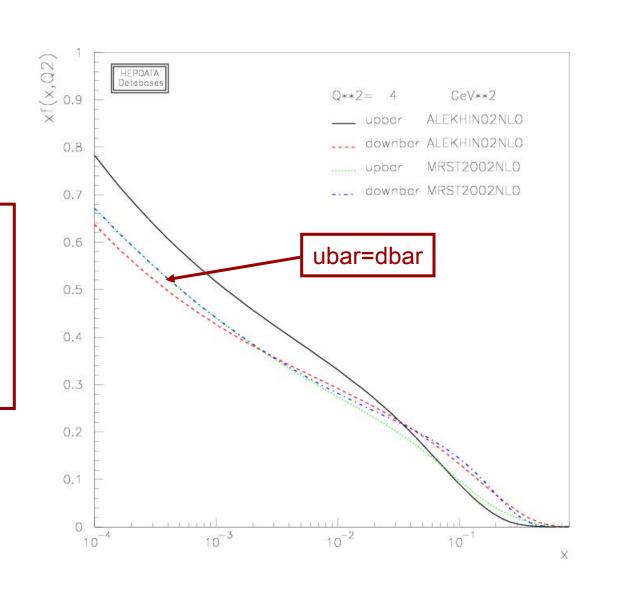
the stability of the small-x fit can be recovered by adding to the fit empirical contributions of the form


$$P_{gg} \to P_{gg}^{\text{NLO}} + A \overline{\alpha}_{S}^{4} \left(\frac{\ln^{3} 1/x}{3!} - \frac{\ln^{2} 1/x}{2!} \right)$$

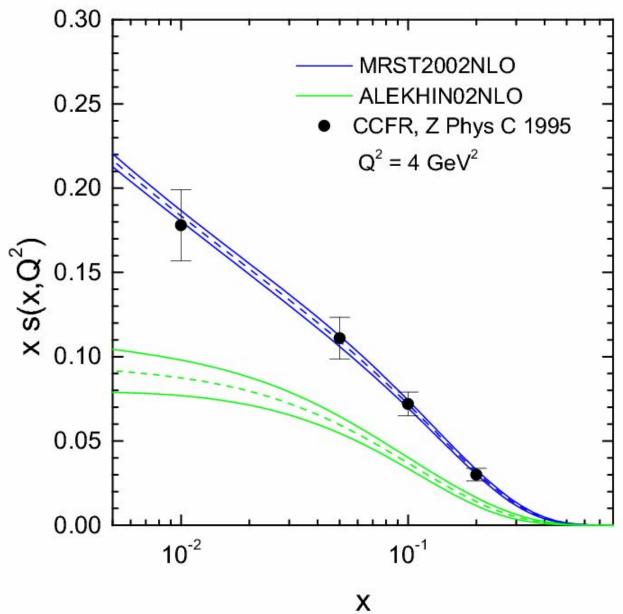
$$P_{gg} \to P_{gg}^{\text{NLO}} + B \alpha_{S} \frac{n_{f}}{3\pi} \overline{\alpha}_{S}^{4} \left(\frac{\ln^{3} 1/x}{3!} - \frac{\ln^{2} 1/x}{2!} \right)$$

... with coefficients *A*, *B* found to be O(1) (and different for the NLO, NNLO fits); the starting gluon is still very negative at small *x* however

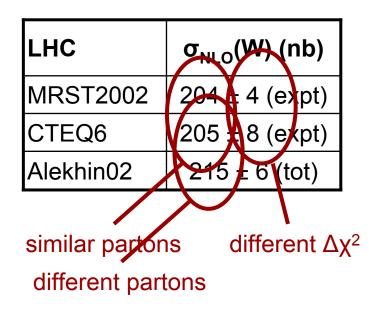
extrapolation errors

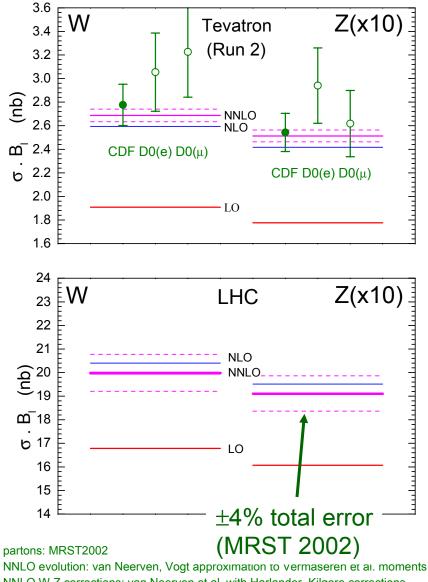


theoretical insight/guess: $f \sim A x$ as $x \rightarrow 0$

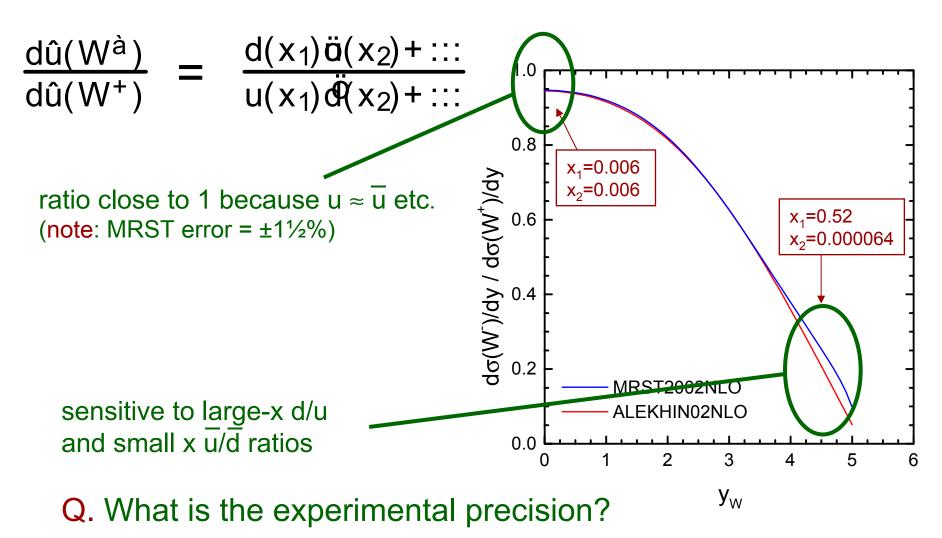

theoretical insight/guess: $f \sim \pm A x^{-0.5}$ as $x \rightarrow 0$

differences between the MRST and Alekhin *u* and *d* sea quarks near the starting scale





 $\sigma(W)$ and $\sigma(Z)$: precision predictions and measurements at the LHC



NNLO W,Z corrections: van Neerven et al. with Harlander, Kilgore corrections

ratio of W⁻ and W⁺ rapidity distributions

summary and outlook

- need a better understanding of differences between pdf sets (central values and errors): not just 'experimental errors' (easier) but theoretical errors too (harder).
- are apparent 'tensions' between data sets caused by experiment or theory?
- is high-precision F₂ data from HERA revealing breakdown of fixed-order DGLAP? If so, what are implications for LHC?
- F, ?!
- the impact of full NNLO DGLAP?

Joey's Big (pdf) Questions

- need for NNLO
- small x/large x competition for gluon momentum fraction
 impact of/need for including HERA jet data in global fits
 impact of NNLO jet cross section given uncertainty on high x
- · uncertainty on pdf's at beginning of LHC era
- · after 2 fb^-1 of Tevatron and 1 fb^-1 of HERA data
- understand difference between CTEQ and MRST predictions for say W production
- importance of parameterization/data selection/renorm scheme
- · what are differences for W and Z acceptances?
- further develop use of W cross section for normalization
 what are limits to theoretical/experimental systematic errors?
- improve/promote LHAPDF for all ME/MC programs

KITP Collider Physics Conference

summary and outlook contd.

- impact on global fits of HERA jet data? (e.g. γ*g→jets)
- current interest in flavour structure of sea: e.g. ubar ≠ dbar and s ≠ sbar (NuTeV). Can LHC provide information? (e.g. s g → W c)
- moving beyond inclusive regime the role of unintegrated (in k_T) parton distributions?
- improvements expected by LHC start-up? (i.e. from theory + new HERA, Tevatron data)

