Higgs production with forward protons:

ATLAS Physics potential?

Hera-LHC start-up, Mar.2004

M.Boonekamp, ATLAS with R.Peschanski, C.Royon

- ☐ Notation, conventions & other jargon
- ☐ Topologies and other rough properties
- ☐ Why this may be interesting (2 words)
- ☐ Towards a physics case?

Models

Models A&D

 $\sigma_{H} \sim 100 \ fb \ (disf.)$

 $\sigma_{\rm H} \sim 3~{\rm fb}$

 $\sigma_{H} \sim 0.1 \; fb$

- Topology
 - □ 2 outgoing protons + hard central system; large rapidity gaps; QCD mediated
- ☐ A few hints on phenomenology
 - ☐ Process is a potential jackpot; wide range of predictions
 - Model A-1 : Bialas-Landshoff (Regge-inspired, non-perturbative) :
 - ☐ Model A-2 : Khoze, Martin, Ryskin (Entirely perturbative)
 - Model D : QED
- Experimental remarks (relevant for LHC)
 - \square H mass range bounded by $\xi_{\min}\xi_{\min}$ s
 - \square Mass resolution down to 1% (\rightarrow Helsinki best case)
 - \Box s/b: H → bb / bb continuum O(1), thanks to several suppression mechanisms (central system has Jz=0, is color singlet)

Models B&C

- Topology
 - □ 2 outgoing protons + hard central system + Pomeron remnants
 - \square Small, very forward (undetectable, if m_X large) rapidity gaps
- ☐ A few hints on phenomenology
 - □ Process exists (\equiv DPE dijets are being measured) and is fairly large; $\sigma_H \sim 100-300$ fb
 - Model B: Boonekamp-Peschanski-Royon, extension of the original (exclusive) Bialas-Landshoff model.
 - ☐ Model C : Cox-Forshaw; factorization assumes Hera fluxes (←Pomwig)
- Experimental remarks (relevant for LHC)
 - Background to the exclusive models
 - ☐ Any improved mass reconstruction relies on Pomeron remnants detection
 - □ s/b: H → bb / bb continuum $O(10^{-3}-10^{-4})$

Situation today

- Process studied since beginning of 90's : many groups, many models (some of them complementary, e.g. inc⊕exc), large variety of predictions
- Meanwhile: much experimental interest, since it was realized (Albrow, Rostovtsev) that Missing Mass measurements would provide extraordinary mass resolution at the Tevatron. LHC study performed since then

(Finland group):

Forward proton detector setup : complicated interplay

- □ 3-4 more years before LHC start-up
 - ☐ Physics case still to be made
 - ☐ Is this a discovery channel, or a confirmation channel+bonus?
- ☐ Monte-Carlo programs : Pomwig (← Herwig), SCI (← Pythia)

Studies to be performed (>> Physics case)

- ☐ Inclusive models: Determination of Regge parameters on forthcoming Run2 CDF and ☐ D0 data ☐ Predictions at the LHC
- ☐ L1 trigger with FPD's
- L1 trigger with central detectors : large gaps may help us : find \mathcal{L}_{opt} , and request it
- Exclusive models : perform analysis at hadron/detector level

Take background from Inclusive production as found above

Worst case : exclusive given by γγ exchange
 → do we still see something? (surely no discovery, maybe spin/parity in the long term?)

Considered experimental setup

L1 trigger: forward protons

- ☐ Setup used:
 - 1: 215 m: $0.02 < \xi < 0.2$, $|t| < 2 \text{ GeV}^2$ (warm section, ~L1 triggerable)
 - **2**: 320 m: $0.003 < \xi < 0.025$, $|t| < 2 \text{ GeV}^2$ (warm section)
 - 3: 420 m: $0.002 < \xi < 0.016$, $|t| < 2 \text{ GeV}^2$ (cold section)
- \square Exclusive Higgs, m_H=120 GeV
 - □ 1 signal in **1**: 67%
 - ☐ Confirmed by 2 calo jets

(pT>20 GeV): 48% $\epsilon(L1)$

- \square opposite signal: 24% $\varepsilon(L2)$
- ☐ Missing mass resolution not optimal in this configuration. Other cuts needed to reduce the diffractive background

L1 trigger: calorimeter gaps

- \square Trigger on dijets (E_T>20-30 GeV)
- ATLAS cannot do jet topology at L1Only counting
- \Box Forward $E_T!$
- ☐ FCAL : forward calorimeter; $3.2 < |\eta| < 4.9$

L1 trigger: calorimeter gaps

- \Box First attempt: veto on total forward E_T
- ☐ I do not even consider calorimeter noise...
- Very low lumi : 4 vs 2→ OK!
- ☐ Add 1 minimum bias event : (4+1) vs 2
 There is already ~no discrimination
 anymore...

L1 trigger: calorimeter gaps

- Second attempt: veto on local E_T maximum (FCAL phi-wedge)
- ☐ Still no calorimeter noise...
- Very low lumi : 4 vs 2→ OK!
- ☐ Add 1 minimum bias event : (4+1) vs 2

 Clear difference in the tail (resp. absence and presence of hard forwardradiation)

 But the discrimination is insufficient!

"Optimal luminosity"

- Maximize the probability to have:
 - ☐ 1 hard, interesting process per bunchcrossing (small cross-section)
 - □ 0 overlapping minimum bias events

$$\rightarrow P \propto \mathcal{L}.exp(-\sigma_{mb}\mathcal{L}/f)$$

- $\sigma_{mb} = 55 \text{ mb (inelastic)}$ $f = 40 \ 10^6 \text{ Hz (25 ns between b.c)}$ $\frac{10^{32} \text{ /cm}^2/\text{s}}{25 \text{ mb (inelastic)}}$
- □ Nota bene :

$$<$$
N_{mb} $> = \sigma_{mb} \mathcal{L}_{opt} / f = 1$
and P(0|1) = e⁻¹ = 0.37

☐ So: if you need gaps, you lose a lot of time, and 2/3 of the signal

Signals and backgrounds

☐ Processes & cross-sections : obtained with Pomwig v2

Process	Raw cross section	Normalisation
$pp \rightarrow pp + JJ/bb/cc + X$	$1.9\ 10^5\ /\ 0.9\ 10^3\ /\ 0.9\ 10^3\ \text{pb}$	×3.8 (CDF Data)
$pp \rightarrow pp + H + X$	43.5 fb	×3.8 (CDF Data)
$pp \rightarrow pp + JJ/bb/cc, B-L$	$4.2\ 10^5 / 55 / 6\ pb$	\times 0.03 (KMR surv.)
$pp \rightarrow pp + H, B-L$	131 fb	× 0.03 (KMR surv.)
$pp \rightarrow pp + bb/cc, QED$	0.66 / 1.15 fb	\times 0.85 (KMR surv.)
$pp \rightarrow pp + H, QED$	0.1 fb	\times 0.85 (KMR surv.)

- ☐ Ingredients for simulation
 - ☐ Atlfast : fast detector response (ATLAS calorimeters)
 - ☐ Heslsinki FPD acceptances and resolutions

Missing mass resolution: $m_H=120 \text{ GeV}$

Analysis cuts

- ☐ I just enumerate...
- 2 protons tags
- \square No Forward E_T (<1 GeV)
- \square 2 central jets : $p_{T1}>45$ GeV, $p_{T2}>30$ GeV, back-to back in ϕ
- **□** B-tagging ($ε_b \sim 60\%$, $ε_g \sim 1\%$)
- \square Central mass fraction : $M_{JJ}/M_{Tot} > 0.75$
- \Box Central to missing mass : $M_{JJ}/(\xi_1\xi_2s)^{1/2} > 0.8$

Results

- Normalization reminder:
 - \Box $\sigma_{bb} = 55 \text{ pb}, \ \sigma_{H} = 131 \text{ fb},$ from Bialas-Landshoff
 - ☐ From KMR we take a survival probability of 3%
 - □ ~6% signal efficiency
 - □ So in total ~23 events of signal for 100 fb⁻¹, *forgetting about pile-up*
- Remind: we asked for gaps, so 100 fb⁻¹ means, actually, ~300 fb⁻¹ to account for the requirement of having no overlapping event.
- \blacksquare At a speed of 7.3 10^{32} .

Comparison with KMR estimates, and other caveats

- ☐ In summary, KMR estimates $s/b \sim 3$, and a realistic simulation finds $\sim 1/3$
- ☐ Reasons, to my understanding:
 - \Box $\sigma_{\text{KMR}} = 1 \text{ GeV}$; $\sigma_{\text{realistic}} \sim 3 \text{ GeV}$
 - \Box Integrate over $\pm 2\sigma$ to get 95% of signal

Other caveat:

Low mass Susy Higgs bosons:
There is no acceptance!
Recent papers on low-mass
CP violating Higgs bosons
seem to neglect this?!

Conclusions, to my sadness

- ☐ It is hard to believe in :
 - ☐ A standard model Higgs boson visilibity in DPE, unless a factor 10 is gained in Missing mass resolution
 - ☐ Low-mass Susy Higgs bosons : the acceptance is too small
- Rapidity gaps can reduce backgrounds, and help to trigger:
 - $\square \rightarrow \mathcal{L}_{opt}$: slow...
 - Don't forget to add another factor 1/3 to the signal normalization (or a factor 3 to the require luminosity).

All this starts to be a lot of difficulties.