A. Nikitenko. Imperial College, London

PYTHIA vs LO/NLO comparizon for b quark spectra in gg->bbh and gb->bh production

Motivation

precision of $tan(\beta)$ measurement in MSSM using bbH, H->2 τ

R. Kinnunen, S. Lehti, F. Moortgat, A. Nikitenko, M. Spira; contribution to Les Houches 2003

Idea:
$$N_S = \sigma \times L \times \varepsilon_{sel} = tan^2(\beta)_{eff} \times F(M_A) \times L \times \varepsilon_{sel}$$
; at high tan(β)

(F also depends on other SUSY parameters)

experimental selections use single b-tagging : $E_T^{j} > 20$ GeV, $|\eta_{j}| < 2.4$

source of uncertainty	contribution to tan(β) uncertainty	
gg->bbh NLO cross section	10 %	
h->2τ NLO Branching ratio	1.5 %	
luminosity	2.5 %	
statistics	4.0 %, M _A =200 GeV, tan(β)=20	
mass M _A reconstuction precision	2.0 %, M _A =200 GeV, tan(β)=20	
experimental selections	~ 2.5 % (preliminary)	
accuracy of μ, M ₂ , M _{SUSY} , A _t	not considered	
correct kinematics generation: b jet spectra for single b-tagging	??? subject of this talk	

Comparizon of PYTHIA with LO/NLO for gg->bbh (I)

"LO / NLO" b quark spectra in PYTHIA6.220

LO - b quark before gluon radiation

NLO - b' quark after gluon radiation

this definition is in consistency with one used in LO/NLO calculations by S. Dittmaier, M. Kramer and M. Spira hep-ph/0309204, so we may compare p_t^b and $p_t^{b'}$ between PYTHIA and their LO/NLO calculations

Comparizon of PYTHIA with LO/NLO for gg->bbh (II)

Cross section as a function of p_T cut on the leading p_T b quark

- σ_{PYTHIA} is normalized at $\sigma_{NLO/LO}$ for $p_T > 0$ GeV
- LO (NLO) uses CTEQ6L1(CTEQ6M), μ = (2m_b+M_H) / 4
- default settings in PYTHIA; work in progress to use the same PDF and scale as in LO/NLO calculations
- M_H = 120 GeV, m_b =4.62 GeV, Standard Model

pT cut, GeV	0	10	20	30	40	50
σ _{NLO} (pb)	734	507	294	173	106	68
σ _{PYTHIA} (pb)	734	523	275	156	92	60
σ _{LO} (pb)	528	393	241	152	102	71
σ _{PYTHIA} (pb)	528	407	245	154	101	70

Agreement between PYTHIA and NLO at 5-10 % level Agreement between PYTHIA and LO at the level of 1-2 %

gg->bbh vs gb->bh in PYTHIA. what use to generate signal?

p_T^b , η^b after radiation normalized on the same value

gg->bbh vs gb->bh : difference in "b-tagging" efficiency

parton "b tagging": b quark of $p_T^b > 20$ GeV, $|\eta|^b| < 2.4$

single and double "b-tagging" efficiency with PYTHIA gg->bbh and gb->bh; M_H = 120 GeV

	gg->bbh	gb->bh
single b tagging	0.304	0.223
double b tagging	0.032	0.015

Difference of 27 % for single "b-tagging" efficiency

Difference of 47 % for double "b-tagging" efficiency

gb->bh: PYTHIA vs LO/NLO (I)

NLO for gb->bh:

J. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Phys. Rev. D 67 (2003), 095002

The leading b jet p_T spectra at NLO (and LO) was provided by Scott Willenbrock, Fabio Maltoni and John Campbell

b-jet at NLO - b' quark and gluon(s) in cone 0.7 arownd b' quark direction. This definition is used in both NLO and PYTHIA generation.

CTEQ6L1(M) for LO (NLO) calculations. $\mu_R = \mu_F = m_H$. Default setti

Default settings in PYTHIA

gb->bh: PYTHIA vs LO/NLO (II)

PYTHIA cross section is normalized on LO and NLO cross sections

Dood agreement between LO and PYTHIA, but worse for NLO.

Would be good to have LO/NLO spectra from 0 GeV: in MC generation we did not cut on p_T^b ; we cut later on E_T of the reconstructed and tagged b jet (~ 20 GeV)

Conclusion

gg->bbh production in PYTHIA provides agreement within ~ 10 % as compared with NLO for b quark spectra. It is another source of uncertainty for $tan(\beta)$ measurement : signal generation uncertainty.

gb->bh - need more study before making conclusion.

for both gg->bbh and gb->bh: dependance on scale, pdf, η^b still has to be investigated