A. Nikitenko. Imperial College, London PYTHIA vs LO/NLO comparizon for b quark spectra in gg->bbh and gb->bh production #### **Motivation** ## precision of $tan(\beta)$ measurement in MSSM using bbH, H->2 τ R. Kinnunen, S. Lehti, F. Moortgat, A. Nikitenko, M. Spira; contribution to Les Houches 2003 Idea: $$N_S = \sigma \times L \times \varepsilon_{sel} = tan^2(\beta)_{eff} \times F(M_A) \times L \times \varepsilon_{sel}$$; at high tan(β) (F also depends on other SUSY parameters) experimental selections use single b-tagging : $E_T^{j} > 20$ GeV, $|\eta_{j}| < 2.4$ | source of uncertainty | contribution to tan(β) uncertainty | | |--|---|--| | gg->bbh NLO cross section | 10 % | | | h->2τ NLO Branching ratio | 1.5 % | | | luminosity | 2.5 % | | | statistics | 4.0 %, M _A =200 GeV, tan(β)=20 | | | mass M _A reconstuction precision | 2.0 %, M _A =200 GeV, tan(β)=20 | | | experimental selections | ~ 2.5 % (preliminary) | | | accuracy of μ, M ₂ , M _{SUSY} , A _t | not considered | | | correct kinematics generation: b jet spectra for single b-tagging | ???
subject of this talk | | #### Comparizon of PYTHIA with LO/NLO for gg->bbh (I) #### "LO / NLO" b quark spectra in PYTHIA6.220 LO - b quark before gluon radiation NLO - b' quark after gluon radiation this definition is in consistency with one used in LO/NLO calculations by S. Dittmaier, M. Kramer and M. Spira hep-ph/0309204, so we may compare p_t^b and $p_t^{b'}$ between PYTHIA and their LO/NLO calculations ## Comparizon of PYTHIA with LO/NLO for gg->bbh (II) #### Cross section as a function of p_T cut on the leading p_T b quark - σ_{PYTHIA} is normalized at $\sigma_{NLO/LO}$ for $p_T > 0$ GeV - LO (NLO) uses CTEQ6L1(CTEQ6M), μ = (2m_b+M_H) / 4 - default settings in PYTHIA; work in progress to use the same PDF and scale as in LO/NLO calculations - M_H = 120 GeV, m_b =4.62 GeV, Standard Model | pT cut, GeV | 0 | 10 | 20 | 30 | 40 | 50 | |--------------------------|-----|-----|-----|-----|-----|----| | σ _{NLO} (pb) | 734 | 507 | 294 | 173 | 106 | 68 | | σ _{PYTHIA} (pb) | 734 | 523 | 275 | 156 | 92 | 60 | | σ _{LO} (pb) | 528 | 393 | 241 | 152 | 102 | 71 | | σ _{PYTHIA} (pb) | 528 | 407 | 245 | 154 | 101 | 70 | Agreement between PYTHIA and NLO at 5-10 % level Agreement between PYTHIA and LO at the level of 1-2 % ## gg->bbh vs gb->bh in PYTHIA. what use to generate signal? # p_T^b , η^b after radiation normalized on the same value gg->bbh vs gb->bh : difference in "b-tagging" efficiency parton "b tagging": b quark of $p_T^b > 20$ GeV, $|\eta|^b| < 2.4$ single and double "b-tagging" efficiency with PYTHIA gg->bbh and gb->bh; M_H = 120 GeV | | gg->bbh | gb->bh | |------------------|---------|--------| | single b tagging | 0.304 | 0.223 | | double b tagging | 0.032 | 0.015 | Difference of 27 % for single "b-tagging" efficiency Difference of 47 % for double "b-tagging" efficiency #### gb->bh: PYTHIA vs LO/NLO (I) #### NLO for gb->bh: J. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Phys. Rev. D 67 (2003), 095002 The leading b jet p_T spectra at NLO (and LO) was provided by Scott Willenbrock, Fabio Maltoni and John Campbell b-jet at NLO - b' quark and gluon(s) in cone 0.7 arownd b' quark direction. This definition is used in both NLO and PYTHIA generation. CTEQ6L1(M) for LO (NLO) calculations. $\mu_R = \mu_F = m_H$. Default setti Default settings in PYTHIA ## gb->bh: PYTHIA vs LO/NLO (II) PYTHIA cross section is normalized on LO and NLO cross sections Dood agreement between LO and PYTHIA, but worse for NLO. Would be good to have LO/NLO spectra from 0 GeV: in MC generation we did not cut on p_T^b ; we cut later on E_T of the reconstructed and tagged b jet (~ 20 GeV) #### **Conclusion** gg->bbh production in PYTHIA provides agreement within ~ 10 % as compared with NLO for b quark spectra. It is another source of uncertainty for $tan(\beta)$ measurement : signal generation uncertainty. gb->bh - need more study before making conclusion. for both gg->bbh and gb->bh: dependance on scale, pdf, η^b still has to be investigated