Flavor content of initial state cascades

H. Jung, DESY

HERA - LHC workshop, Jets WG, Startup Meeting CERN, March 2004

- the problem: fwd-jets and fwd-pions at HERA
- unintegrated gluons and unintegrated quarks
- relevance for HERA and LHC

The problem at small x: Forward Jets I

DIS: $5 \text{ GeV}^2 < Q^2 < 75 \text{ GeV}^2$ forward jet (incl. k_t algorithm)

$$7.0^{\circ} < \theta_{jet} < 20.0^{\circ}$$

 $x_{jet} > 0.035$
 $0.5 < \frac{p_{t jet}^{2}}{O^{2}} < 2$

DGLAP too small, need for k_t factorisation with BFKL or CCFM ???

The problem at small x: Forward π^0 I

DIS: forward π^0 (instead of jet)

$$5^{\circ} < \theta_{\pi} < 25.0^{\circ}$$

 $x_{\pi} > 0.01$

DGLAP too small, need more:

- CCFM too small at small x !?!
- WHY ?!?

The model - CCFM and CASCADE

- CCFM in MC generator CASCADE ... only gluons
- initial state CCFM cascade with strict angular ordering
- gluons only might be ok for jets....
- but ... different fragmentations for pions
- quarks in unintegrated pdfs..... important for pions
- different splitting functions
- different scale behavior....

How to measure it ???

Relevance for LHC???

Differentiate unintegrated density quarks and gluons

- identify quarks (heavy quarks or jets) reconst. 4 jets
- measure $\cos \theta^*$... test propagator in initial state cascade !!!

- measure contribution of quark initiated fwd-jet production
- measure unintegrated quark density ????....

- search for Higgs ...
- m D basic process: LO $\mathcal O(lpha_s^2)$ gg ightarrow Higgs

- search for Higgs ...
- m D basic process: LO $\mathcal O(lpha_s^2)$ gg ightarrow Higgs
- NLO $\mathcal{O}(\alpha_s^3)$

- search for Higgs ...
- basic process: LO $\mathcal{O}(\alpha_s^2)$ gg o Higgs
- lacksquare NLO $\mathcal{O}(\alpha_s^3)$
- NNLO $\mathcal{O}(\alpha_s^4)$ not yet calculated

- search for Higgs ...
- basic process: LO $\mathcal{O}(\alpha_s^2)$ gg \to Higgs
- lacksquare NLO $\mathcal{O}(\alpha_s^3)$
- NNLO $\mathcal{O}(\alpha_s^4)$ not yet calculated
- NNNLO $\mathcal{O}(\alpha_s^5)$ not yet calculated
- available only: NLO + NNLL resummation....
 Bozzi et al (PLB 564 (2003) 65, hep-ph/0302104)

- search for Higgs ...
- basic process: LO $\mathcal{O}(\alpha_s^2)$ gg \to Higgs
- lacksquare NLO $\mathcal{O}(\alpha_s^3)$
- NNLO $\mathcal{O}(\alpha_s^4)$ not yet calculated
- NNNLO $\mathcal{O}(\alpha_s^5)$ not yet calculated
- available only: NLO + NNLL resummation....
 Bozzi et al (PLB 564 (2003) 65, hep-ph/0302104)
- lacksquare calculate gg o Higgs in k_t factorisation
- ullet small x approximation and for for $m_t o \infty$ F. Hautmann, PLB 535 (2002) 159
- obtain NNLO correction to gluon-gluon x-section for $x \ll 1$
- estimate higher order corrections ...
- get resummation to all orders

- use new matrix element (off-shell)
 F. Hautmann, PLB 535 (2002) 159
- calculate q_T spectrum with CCFM unintegrated gluon: two sets, both determined from HERA
- sensitive to trans. mom. of gluons

- new approach to calculate Higgs prod. at LHC
- important for x-section estimate
- different result than NLO ...
- better constrain unintegrated gluon ...

- use new matrix element (off-shell)
 F. Hautmann, PLB 535 (2002) 159
- calculate q_T spectrum with CCFM unintegrated gluon: two sets, both determined from HERA
- sensitive to trans. mom. of gluons
- up to now only gluon initiated cascades
- BUT, what about quark initiated cascades?

- new approach to calculate Higgs prod. at LHC
- important for x-section estimate
- different result than NLO ...
- better constrain unintegrated gluon ...

- ullet gluon density at $ar q=m_{f higgs}$
- only gluon chains included

gluon densities different at large scales

what about ?

unintegrated quarks?

include also quark chains ???

Conclusions

- k_t -factorisation applied to ep and $p\bar{p}$
- at present only gluon chains included....
- need also quark chains, for high scales like Higgs prod.
- sensitive to flavor contents of parton cascade
- Higgs at LHC ... promising, but also x-sects, shapes ???
- new attempt to calculate higher order contributions

detailed measurement and calculation of unintegrated pdfs needed !!!

use it (in CASCADE) for heavy quarks ... and Higgs ... !!!