Tag Jets in Vector Boson Fusion

Bruce Mellado
University of Wisconsin-Madison
HERA and LHC Workshop, 27/03/04

SM Higgs at LHC

Production:

- > Direct
 - \Leftrightarrow gg \rightarrow H
 - **□** Dominant
 - ☐ Large background at masses close to LEP limit
 - \$ qq →qqH (VBF)
 - ☐ Distinct final state
- > Associated
 - * ttH, WH, ZH
 - ☐ Small cross-section

Low Mass Higgs via VBF

- ↓ Wisconsin Phenomenology
 Institute (D.Rainwater,
 D.Zeppenfeld et al.):
 - > Two high P_T jets with large $\Delta \eta$ separation
 - > Strong discovery potential for low Higgs mass
 - > Helps measuring couplings
 - > Invisible Higgs decays
- **↓** Feasibility studies
 - > CMS Note 2003/033
 - ➤ ATLAS SN-ATLAS-2003-024 ***Updates in progress**

Major Experimental Issues

Major experimental issues addressed with a full detector simulation (Geant3)

- Tagging forward jets:

 >Efficiencies critical

 >Full simulation used

 >Double tag efficiency ~50% 20 0.6
- ← Central jet veto:
 - >Pile up effects introduce fake central jets 10
 - * Effect small at low luminosity,
 - ❖ Serious concern at high **luminosity**
 - >Very sensitive to underlying of effect
 - Detailed studies underway

Low Mass Higgs via VBF

4H->WW*->llvv,lvqq. Strongest in 125<MH<190 GeV

- >Main background:
 - * tt EW WWjj
 - ❖ W + 4 jets

- #H->ττ->II, Ih (+ptmiss). Strong around LEP limit
 - >Main background
 - * QCD and EW Zjj

- \bot H-> $\gamma\gamma$. Contributes around LEP limit
 - >Main background
 - \Rightarrow Real and fake non-resonant $\gamma\gamma$

Intermediate Mass Higgs via VBF

- ↓ Used for first time

 H→WW→II and H→ZZ→IIqq

 associated with two hard

 jets for intermediate masses

 (2Mz<MH<500 GeV)
 </p>
 - >By using kinematic fits obtain $(\delta M/M \approx 2.5\%)$ with $H \rightarrow ZZ \rightarrow Ilqq$
- Discovery confirmation and direct measurement of couplings ratio

$$\frac{\sigma \times BR(qqH \rightarrow qqWW)}{\sigma \times BR(qqH \rightarrow qqZZ)} = \frac{\Gamma_{HWW}}{\Gamma_{HZZ}}$$

ATLAS Preliminary

- ✓ Sensitivity to low mass SM Higgs dominated by VBF
- √ VBF studies extended to intermediate masses

MSSM Higgs Discovery Potential

Two Experiments 10 fb⁻¹ (No VBF)

One Experiment 10 fb⁻¹ (With VBF)

Summary

- Searches associated with two hard jets dominate sensitivity for low mass Higgs
 - \succ With Neural nets and likelihood techniques may reach 5σ effect for $M_H>115$ GeV with one experiment and $10~{\rm fb^{-1}}$ assuming expected detector performance
- **LATLAS** has extended these searches to 2M_Z<M_H<500 GeV
- With these searches one experiment may cover all MSSM parameter space with 10 fb⁻¹
- Forward jet tagging efficiency crucial and understanding of central jet veto - crucial issues
 - Sensitive to underlying event. Studies with a full detector simulation underway