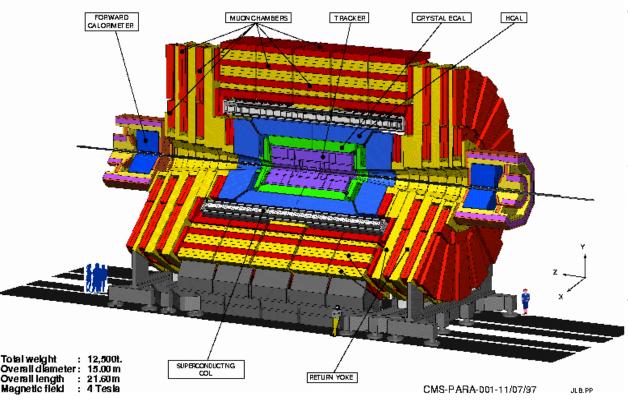

Triggering on Diffraction with the the CMS Level-1 Trigger

Monika Grothe, U Wisconsin HERA-LHC workshop March 2004


The fish we want to catch! (in case it exists)

Need highest achievable LHC Lumi, \mathcal{L}_{LHC} = 10³³ to 10³⁴ cm⁻² s⁻¹ Diffractive program with TOTEM at \mathcal{L} = 10²⁸ to 10³¹cm⁻² s⁻¹ + special high- β * optics TOTEM acceptance at \mathcal{L}_{LHC} and nominal beam optics: 0.02 < ξ <0.2

Need CMS & need CMS Level-1 trigger to retain this possible discovery channel

CMS and its Level-1 trigger

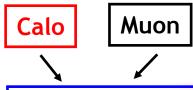
Tracking: Si pixels + Si strips Calorimetry:

ECAL PbWO4 crystals

HCAL Scintillator/copper

HF Quartz/copper

4T solenoid


Muon detection with

instrumented iron

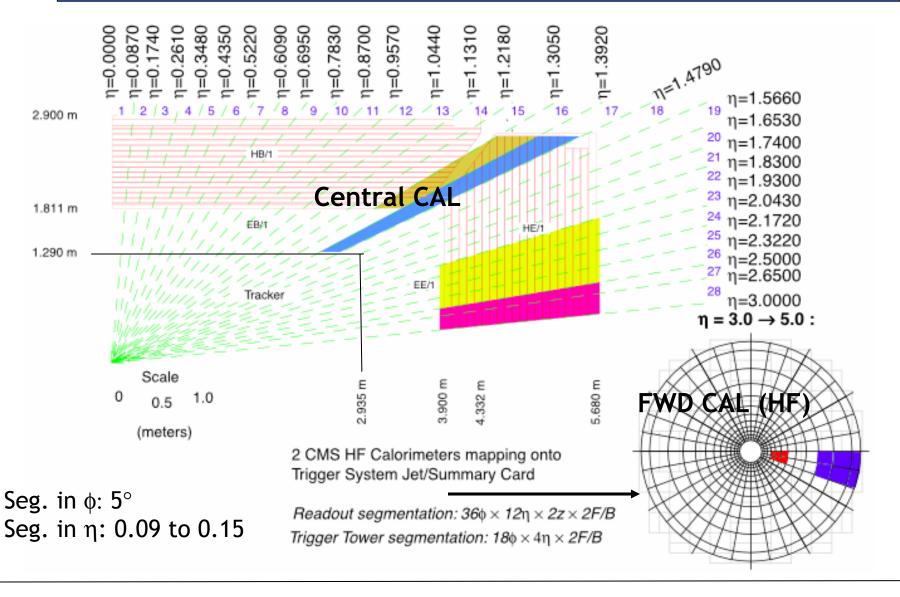
Coverage

Tracking $0 < |\eta| < 3$

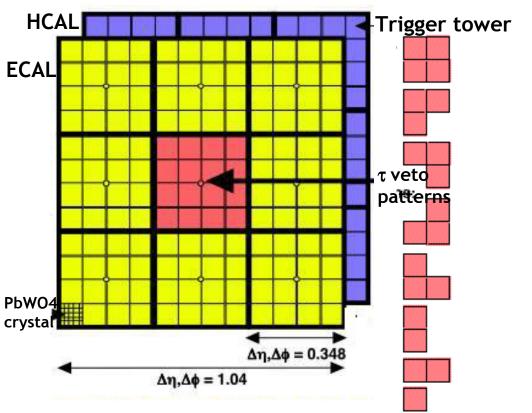
Calorimeters $0 < |\eta| < 5$

40 MHz collision

Level-1 trigger


< 75 kHz

High-Level Trigger HLT


< 100 Hz

Cal trigger tower segmentation

Level-1 Jets and H_T

 H_T = sum of scalar E_T of all jets with E_T (jet)>threshold

Advantage over total scalar E_T :

- Sums only over E_T around local energy maxima
- More robust against noise and minimum bias events
- At L1 tower-by-tower E_T
 calibration not possible, but
 jet E_T calibration possible,
 f(E_T, η, φ)

- 4x4 trigger towers = region
- Search for jets with sliding 3x3 regions window
- Jet = 3x3 region with E_T in central region above some threshold and with E_T > E_T in any of 8 outer regions
- Jet = τ if τ veto off in all 9 regions

Cal-based CMS L1 diffractive trigger

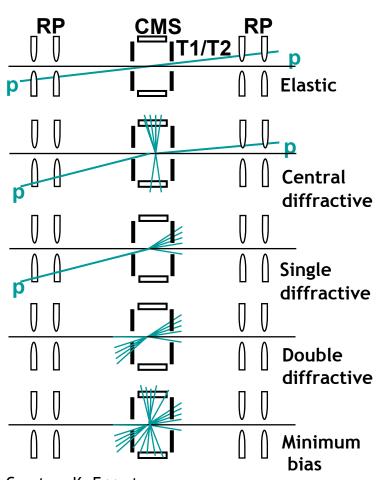
- Exclusive diffractive Higgs production pp→ p H p of a light Higgs (120GeV)
 might occur at LHC with 3-10 fb according to theory
- Current foreseen E_T threshold in 2-jet events at L1 is ~120 GeV per jet
- In order to retain $H \to bbar$ signal on Level-1 need to lower E_T threshold to 40 to 50 GeV
- Need additional constraint to keep QCD background rate in check
- Possible solution: Select 2-jet events in the central Cal and require $\Sigma(E_T \ 2 \ jets)/H_T$ cut on Level-1
- At L =10³³, where pile-up is not a big problem, this cut effectively excludes events with jets in the HF (3 < $|\eta|$ < 5), i.e. corresponds to requiring a minimum rap gap of bigger 2
- At L = 10^{34} , with ~20 overlapping events, this should still be true because H_T excludes the typically low E_T deposits of minimum bias events
- Additional possibility at L1: correlating η and ϕ position of jets

Work on-going by Helsinki (TOTEM) and Nebraska, Wisconsin(CMS) groups

CMS Level-1 Trigger & TOTEM (I)

- TOTEM physics program: total pp, elastic & diffractive cross sections
- Apparatus:) β^* Inelastic Detectors (T1 $3<\eta<5$, T2 $5<\eta<6.5$) & Roman Pot stations at 150 m and 220 m, with η coverage up to 10 (13) at low (high) β^*
- Dedicated runs planned with high β^* optics at L =10²⁸-10³⁰cm⁻²s⁻¹ : >90% of all diffractive protons will be seen in the RPs
- At nominal low β^* LHC running with L=10³³-10³⁴cm⁻²s⁻¹ diffractive acceptance low At 220 m: $0.02 < \xi < 0.2$, could be extended with RPs at 300/400 m: $0.002 < \xi < 0.2$
- o TOTEM wants to implement its DAQ and trigger systems in CMS-compatible fashion
- o Possible triggering scheme, preferred by TOTEM:

The CMS Level-1 trigger receives TOTEM trigger decision and sends a Level-1 Accept to both TOTEM and CMS front-end electronics



Opens up possibility of cross-correlating CMS and TOTEM diffractive triggers

For more details on TOTEM and its diffractive program see talk by F.Ferro this morning

CMS Level-1 Trigger & TOTEM (II)

TOTEM plans for Level-1 Triggers at $\mathcal{L} = 1.6 \ 10^{28} \ \text{cm}^{-2} \ \text{s}^{-1}$

Want CMS operational in low-luminosity start-up phase of LHC when TOTEM runs will take place Goal:
Study and validate
CMS-Calo based diffractive
L1- trigger (E_T/H_T) with the help of TOTEM's Roman pot-based diffractive triggers

Courtesy K. Eggert

Conclusions

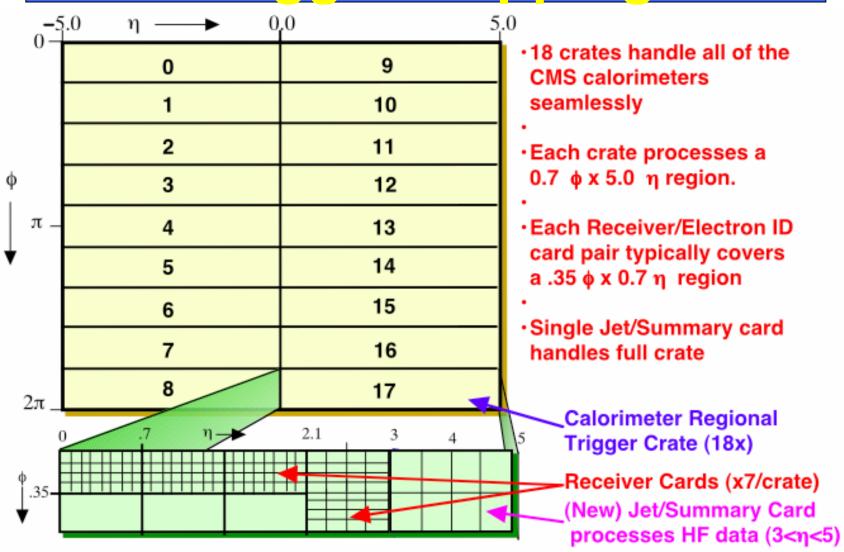
TOTEM Roman-pot based triggers will trigger diffractive events at low-luminosity $(\mathcal{L} = 10^{28} - 10^{31} \, \text{cm}^{-2} \, \text{s}^{-1})$ in runs with special high- β^* optics

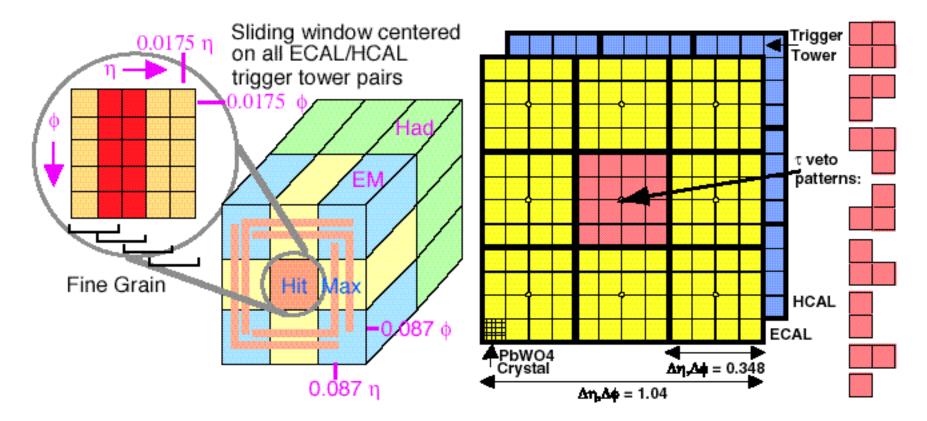
The TOTEM trigger signal is planned to be sent to the CMS Level-1 trigger within its latency requirements.

TOTEM will operate as a CMS trigger/DAQ partition

At nominal LHC luminosity ($\mathcal{L} = 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$) and nominal beam optics, the TOTEM Roman pot acceptance for diffraction is low.

Because of Level-1 latency possible RPs at 300/400 m cannot be used on Level-1.

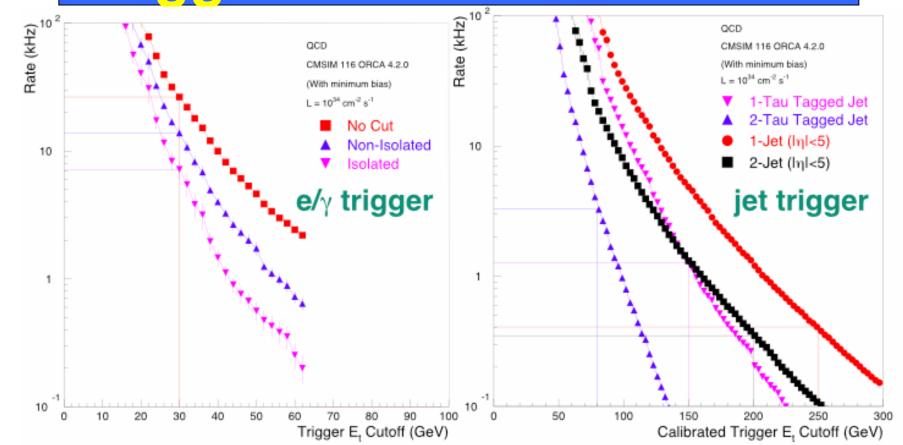

CMS has the possibility to implement a Calorimeter-based diffractive trigger based on an E_{τ}/H_{τ} threshold.


In addition, could use the TOTEM inelastic detectors T1, T2 as veto trigger.

Need to study the E_T/H_T trigger with detailed CMS Level-1 simulation to determine rate and signal efficiency as function of the E_T/H_T threshold.

Further possibilities for inclusion in a diffractive trigger: CASTOR Currently under discussion, see talk by A. Panagiotou this morning

Trigger Mapping



- Electron (Hit Tower + Max)
 - -2-tower ΣE_T + Hit tower H/E
 - −Hit tower 2x5-crystal strips>90% E_T in 5x5 (Fine Grain)
- Isolated Electron (3x3 Tower)
 - –Quiet neighbors: all towers pass Fine Grain & H/E
 - –One group of 5 EM E_T < Thr.

- Jet or τ E_{τ}
 - -12x12 trig. tower ΣE_T sliding in 4x4 steps w/central 4x4 E_T > others
- τ: isolated narrow energy deposits
 - –Energy spread outside τ veto pattern sets veto
 - -Jet ≡ τ if all 9 4x4 region τ vetoes off

Trigger Rates vs Threshold

Rates drop sharply with trigger E₊ cutoff

- Provides ability to tune cuts to sustain rates during operation
- For electron several cuts are available to optimize efficiency versus rate
- For all trigger types there are tunable parameters, e.g., look-up-tables
- QCD background rates are within target (~12 kHz for calorimeter triggers).

Cal Trigger Rates: 2 x 10³³ cm⁻² s⁻¹

Trigg e	Thr shold	95 %Eff.	Indivi dal	Cumula itv e
	(Ge V)	(Ge V)	Rat e(kH)	Rat e(kH)
e	20	27	4. 9	4. 9
e e	15	19	0. 2	5. 0
τ	89	~114	3. 8	8. 6
ττ	75	~100	0. 7	<mark>8.</mark> 8
j	130	152	1. 5	9. 5
j jj	115	131	0. 8	9. 5
jjj	75	77	0. 3	9. 6
jjjj	55	62	0. 2	<mark>9. 6</mark>
e·j	10&100	15&125	0. 4	9. 8
e·τ	10&75	15&~100	0. 8	100
Missing _T E	140	200	0. 0	100
$e \cdot ME_T$	10&75	15&140	0. 4	10 3
$j \cdot ME_T$	60&90	80&150	0. 7	10 6
Tot a E _T	600	1200	0. Ø	10 6
H_{T}	400	470	0. 6	10 7
e(NI)	45	51	0. 2	108
e (eNI)	25	37	0. 3	108
Tot all R ale				108

Selected Scenario: 5 kHz e/g, 5 kHz τ,jets, 1 kHz combined, rest μ