

HERA and the LHC workshop

TOTEM: Early diffractive physics at the LHC

Fabrizio Ferro INFN Genova

on behalf of the TOTEM collaboration

http://totem.web.cern.ch/Totem/

TOTEM goals

- Measurement of the p-p total cross section at 14 TeV with 1% uncertainty with the luminosity independent method
- Measurement of the p-p elastic scattering in the range $10^{-3} < -t < 10 \text{ GeV}^2$
- Study of diffractive events, together with CMS.

Experimental apparatus

- Inelastic detectors
 - T1 CSC Coverage $\sim 3 < |\eta| < \sim 5$
 - T2 GEM Coverage ~5< $|\eta|$ <~7
- Leading proton detectors
 - Silicon detectors inside Roman
 Pots (at 147,180,220 m from IP)

Inelastic detectors

TOTEM

TOTEM inelastic detectors are trackers which have been designed to discriminate between beam-beam and background (eg. beam-gas) events by means of the primary vertex reconstruction.

Roman pots

2004 prototype

The RPs allow the leading proton detectors to move close to the circulating beam

Leading proton detectors

The LPD have to be efficient starting at $10\sigma(\sim1\text{mm})+0.5\text{mm}$ and must provide good ($\sim20\mu\text{m}$) resolution, hence detectors with a small inefficient edge.

Planar Si with guard rings

TOTEM Optics Conditions

 $\mathcal{L}_{\text{TOTEM}} \sim 10^{28} \, \text{cm}^{-2} \, \text{s}^{-1}$

TOTEM needs special/independent short runs at high- β * (1540m) and low ϵ Scattering angles of a few µrad

High-β optics for precise measurement of the scattering angle

$$\sigma(\theta^*) = \sqrt{\varepsilon} / \beta^* \sim 0.3 \,\mu \text{rad}$$

As a consequence large beam size

$$\sigma^* = \sqrt{\epsilon \beta^*} \sim 0.4 \text{ mm}$$

Reduced number of bunches (43 and 156) to avoid interactions further downstream

Parallel-to-point focusing (v=0):

Trajectories of proton scattered at the same angle but at different vertex locations

$$y = L_y \theta_y^* + v_y y^*$$

$$L = (\beta \beta^*)^{1/2} \sin \mu(s)$$

$$x = L_x \theta_x^* + v_x x^* + \xi D_x$$
 $v = (\beta/\beta^*)^{1/2} \cos \mu(s)$

$$u = (\beta/\beta^*)^{1/2} \cos \mu(s)$$

Maximize L and minimize v

Measurement of σ_{tot}

Measurement of the total cross section with the luminosity independent method using the Optical Theorem.

$$L\sigma_{tot}^{2} = \frac{16\pi}{1+\rho^{2}} \times \frac{dN}{dt}\Big|_{t=0}$$

$$L\sigma_{tot} = N_{elastic} + N_{inelastic}$$

$$\sigma_{tot} = \frac{16\pi}{1+\rho^{2}} \times \frac{(dN/dt)\Big|_{t=0}}{N_{el} + N_{inel}}$$

Measurement of the elastic and inelastic rate with a precision better than 1%.

Elastic Scattering and Diffraction

Region

Characteristic -t (GeV/c)² Run type¹

Coulomb region	$\leq 10^{-4}$	very high β^*
Coulomb -Strong Interference	$\approx 10^{-3}$	high β*
Pomeron - Diffraction	$\geq 10^{-3}$	high/low β*
Structure - Peaks & Bumps	≈ 0.8	low/high β*
Large -t - Perturbative QCD	≥ 5	low β*

t and ϕ resolution

 $\sigma(t)/t$ vs detector resolution

Extrapolation to t=0

The measurement of σ_{tot} needs $(dN/dt)_{t=0}$ which can be estimated with a statistical uncertainty of ~0.1% (considering 10⁷ reconstructed events after 10h run at L=10²⁸).

	Uncertainty	Fit error		
Beam divergence Energy offset	10% 0.05%	0.05% 0.1%		
Beam/ detector offset	20μm	0.06/0.08 %		
Crossing angle	0.2μrad	0.08/0.1%		
Theoretical uncertainty (model dependent) ~ 0.5%				

Event selection:

- trigger from T1 or T2 (double arm o single arm)
- Vertex reconstruction (to eliminate beam-gas bkg.)

Lost events

Losses	Double arm		Single arm	
Process	%	mb	%	mb
Minimum bias	0.5	0.3	< 0.1	< 0.06
Double Diffractive	39.5	2.8	4.6	0.3
Single Diffractive	-	-	17.9	2.5

Extrapolation for diffractive events needed

 $(\sigma_{inel}.\sim 80 \text{mb}, \sigma_{el}.\sim 30 \text{mb})$

Losses (mb)

	σ(mb)	Double arm	Single arm	Uncertainty after extrapolation
Minimum bias	58	0.3	0.06	0.06
2 x single diffractive	14	-	2.5	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	-	-	0.02
Elastic Scattering	30	-	-	0.1

$$\frac{\Delta \sigma_{tot}}{\sigma_{tot}} \approx \sqrt{0.008^2 + 0.005^2} \approx 0.01$$

Diffraction at high β^*

>90% of all diffractive protons are seen in the Roman Pots proton momentum can be measured with a resolution of few 10⁻³

Log(-t [GeV²])

TOTEM

CMS/TOTEM

CMS/TOTEM is the largest acceptance detector ever built at a hadron collider

For the first time at a collider large acceptance detector which measures the forward energy flow

1 day run at large beta (1540m) and L=10²⁹cm⁻²s⁻¹: 100 million minimum bias events, including all diffractive processes

Single Diffractive Excitation

Double Diffractive Excitation

Double Pomeron Exchange

The Pomeron has the internal quantum numbers of vacuum.

PP:
$$C = +$$
, $I=0$,...

P:
$$J^{P} = 0^{+}, 2^{+}, 4^{+},...$$

$$\Rightarrow$$
 PP: $J^{PC} = 0^{++}$

TOTEM

Double Pomeron Exchange

M (GeV)

 $\xi_1 = \xi_2$

CMS/TOTEM collaboration for diffractive physics

$$\beta^* = 1540 \text{ m } \sigma_{\xi} = 0.5\%$$

$$\beta^*$$
 = 200-400 m σ_{ξ} = few ‰

 ξ = Δ p/p proton momentum loss

$$\beta^* = 0.5 \text{ m } \sigma_{\xi} = \text{few } \%$$

Trigger via Roman pots

Trigger via rapidity gap

$$\xi > 2.5 \ 10^{-2}$$

 ξ < 2.5 10⁻²

Level-1 Trigger

 $L=10^{28} cm^{-2} s^{-1}$

TOTEM

Elastic Trigger:

Signal: 500 Hz Background: 20 Hz

Single Diffractive Trigger:

Signal: 200 Hz Background: 0.1 Hz

Double Diffractive Trigger:

Signal: 100 Hz

Central Diffractive Trigger:

Signal: 10 Hz Background: 2 Hz

Minimum Bias Trigger:

Signal: 1 kHz

The Trigger Logic

Background Suppression

- Beam Halo (dominant): Reduction only by 2-arm coincidence
- Shower particles from beam-beam, beam-gas, beam-machine interactions: Reduction by:
 - Multiple coincidences

RP Unit

Angular cuts

RP Unit

Hit and track multiplicity cuts

- To make common running easier, DAQ and Trigger will be implemented in CMS-compatible fashion
 - Hardware and software compatibility opens the possibility for TOTEM to join the CMS DAQ when making common runs.
 - Front-ends will comply with CMS Trigger Control
 System if TOTEM wants to join the CMS Trigger.
- Possible triggering schemes
 - The CMS GT receives the TOTEM trigger decision and sends L1A both to TOTEM and CMS front-ends.

Scenario (goal)	1 low t elastic, σ _{tot} , min. bias	2 diffr. phys., large p_T phen.		diffr. phys.,		3 intermediate t , hard diffract.	4 large t elastic
β* [m]	1540	1540		200 - 400	18		
N of bunches	43	156		936	2808		
Half crossing angle [µrad]	0	0		100 - 200	160		
Transv. norm. emitt. [µm rad]	1	1	3.75	3.75	3.75		
N of part. per bunch	0.3 x 10 ¹¹	0.6 x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹		
RMS beam size at IP [µm]	454	454	880	317 - 448	95		
RMS beam diverg. [µrad]	0.29	0.29	0.57	1.6 - 1.1	5.28		
Peak luminos. [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	2.4 x 10 ²⁹		$(1 - 0.5) \times 10^{31}$	3.6 x 10 ³²		

Running scenario examples

Luminosity 2·10²⁹ cm ⁻² s ⁻¹

Data taking for soft diffraction : 20 mb \longrightarrow 4 kHz \longrightarrow 4·10 ⁸ events / 1 eff. Day

Double Pomeron: 1 mb 2·10 ⁷ events / 1 eff. Day

Precise study of soft diffraction phenomena

Luminosity 10 ³¹ cm ⁻² s ⁻¹

Few day runs with 4 10 5 s \longrightarrow 4 10 36 cm $^{-2}$ \longrightarrow 4000 evts / nb

Double Pomeron exchange

High masses order of TeV

 $\chi_c \longrightarrow 10^{6-7}$ events before decay

 $\chi_b \longrightarrow 10^{3-4}$ events before decay

Large pt di jets ----- coplanar dijet with two accompanying protons and nothing else

Single diffraction with high pt jets and leptons

Study of rapidity gaps with identified protons

- TOTEM TDR submitted to the LHCC in January LHCC 2004-002/TOTEM TDR 1
- A TDR on the common CMS/TOTEM physics program will be submitted later.

Diffraction at LHC:

PP scattering at highest energy

Soft & Hard Diffraction

 $\xi < 0.1 \Rightarrow O(1)$ TeV "gluon beams" E.g. Structure of the Pomeron $F(\beta,Q^2)$ β down to $\sim 10^{-3}$ & $Q^2 \sim 10^4$ GeV² Diffraction dynamics? Exclusive final states?

Rapidity gap physics - multigaps!

$$y = L_y \theta_y^* + v_y y^*$$

$$y = L_y \theta_y^* + v_y y^*$$
$$x = L_x \theta_x^* + v_x x^* + D\xi$$

Fabrizio Ferro – HERA a

L =
$$(\beta \beta^*)^{1/2} \sin \mu(s)$$

