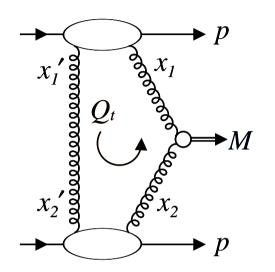

Central Exclusive Higgs with LDC uPDFs

CERN 2004.03.27 Leif Lönnblad

- Higgs à la Khoze, Martin, Ryskin
- Unintegrated gluons from LDC
- Results

Exclusive Diffractive Higgs


$$\frac{d\sigma_{M}^{\text{excl}}}{dM^{2}dy} = \frac{d\mathcal{L}}{dM^{2}dy}\hat{\sigma}_{gg\to M}(M^{2})$$

$$M^{2}\frac{d\mathcal{L}}{dM^{2}dy} = S^{2}L$$

$$L = S^{2} \left(\frac{\pi}{(N_{c}^{2} - 1)b} \int \frac{dQ_{t}^{2}}{Q_{t}^{4}} f_{g}(x_{1}, x_{1}', Q_{t}^{2}, M^{2}/4) f_{g}(x_{2}, x_{2}', Q_{t}^{2}, M^{2}/4) \right)^{2}$$

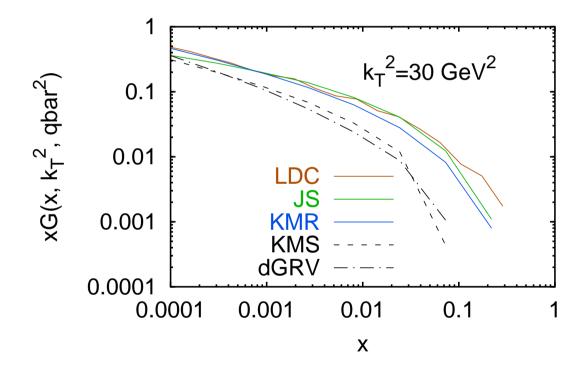
Exclusive Diffractive Higgs

$$\frac{d\sigma_{M}^{\text{excl}}}{dM^{2}dy} = \frac{d\mathcal{L}}{dM^{2}dy}\hat{\sigma}_{gg\to M}(M^{2})$$

$$M^{2}\frac{d\mathcal{L}}{dM^{2}dy} = S^{2}L$$

$$L = S^{2} \left(\frac{\pi}{(N_{c}^{2} - 1)b} \int \frac{dQ_{t}^{2}}{Q_{t}^{4}} f_{g}(x_{1}, x_{1}', Q_{t}^{2}, M^{2}/4) f_{g}(x_{2}, x_{2}', Q_{t}^{2}, M^{2}/4) \right)^{2}$$

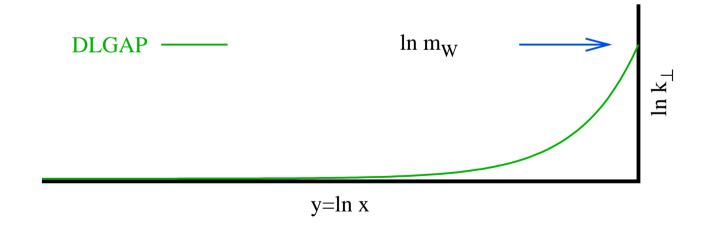
 f_g is the un-integrated, off-diagonal gluon density.


 S^2 is a soft survival probability.

b is the t-slope of the proton.

How well do we know the un-integrated gluon density? $(\mathcal{L} \propto \mathcal{G}^4)$

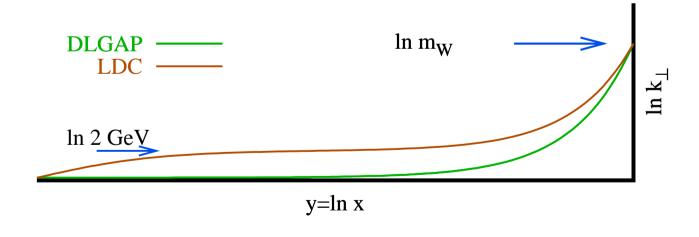
How well do we know the un-integrated gluon density? $(\mathcal{L} \propto \mathcal{G}^4)$



$$f_g^{\text{KMR}}(x, x', Q_t^2, M^2/4) = R_g \frac{\delta}{\delta Q_t^2} \left[\sqrt{T(Q_t, M/2)} x g(x, Q_t^2) \right]$$

$$f_g^{\text{LDC}}(x, x', Q_t^2, M^2) = R_g \sqrt{\Delta_S(Q_t^2, M^2)} \, \mathcal{G}(x, Q_t^2, Q_t^2)$$

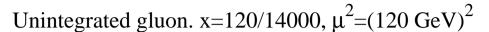
What is the typical evolution path?

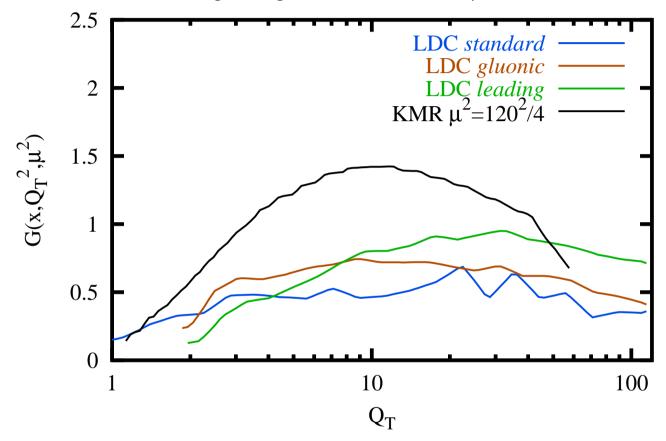


$$f_g^{\text{KMR}}(x, x', Q_t^2, M^2/4) = R_g \frac{\delta}{\delta Q_t^2} \left[\sqrt{T(Q_t, M/2)} x g(x, Q_t^2) \right]$$

$$f_g^{\text{LDC}}(x, x', Q_t^2, M^2) = R_g \sqrt{\Delta_S(Q_t^2, M^2)} \, \mathcal{G}(x, Q_t^2, Q_t^2)$$

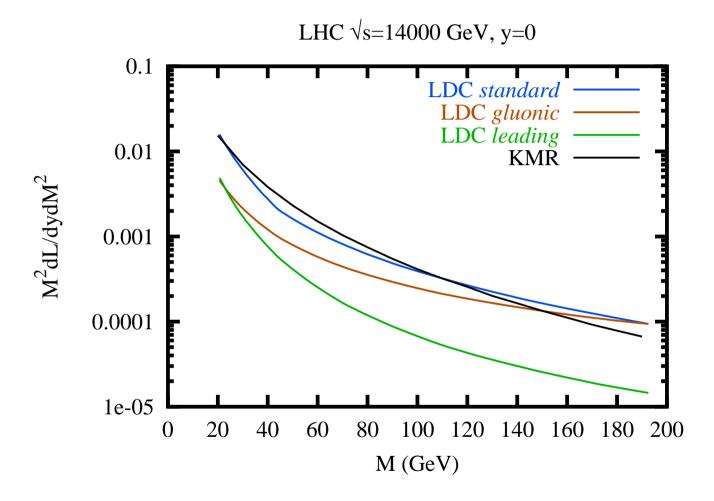
What is the typical evolution path?

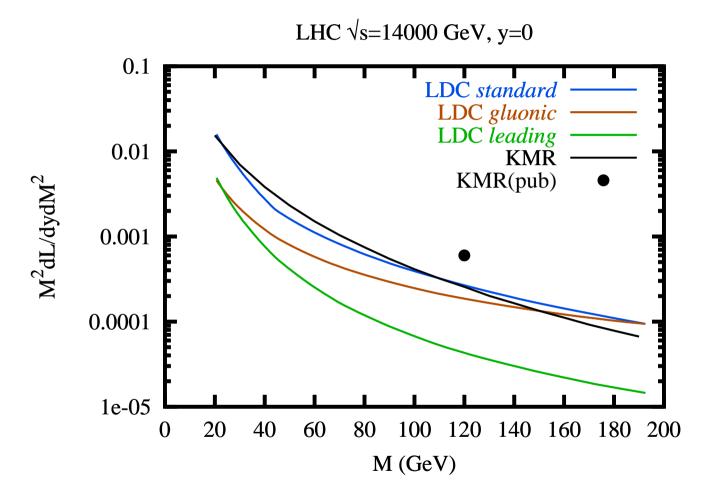

We will use three different LDC unintegrated gluons which differs in the treatment of non-leading terms.


standard uses quark and gluon evolution with full splitting functions. Gives a good description of F_2 .

gluonic uses only gluons with full splitting function. Gives a good description of the integrated gluon.

leading uses only gluons with only singular terms in the splitting function. Gives a good description of forward jets and b-production at the Tevatron.


They are all extracted from generating a large number of DIS events with LDCMC and sampling the gluon density in bins of x and k_{\perp} .


In the luminosity function the Sudakov hits you at small Q_T and the $1/Q_T^4$ at large. $\langle Q_T \rangle \approx 2-3$ GeV.

Results

Results

Khoze, Martin, Ryskin, Eur. Phys. J. C23 (2002) 311.

Continued studies

Trying to understand skewedness inside LDC

Toying around with "intrinsic k_{\perp} " (non-perturbative and non-perturbative) within the original KMR framework.

Gap survival from Pythia

PYTHIA does not have hard diffraction. But if you generate the corresponding non-diffractive process with multiple interactions included, just look at MSTI(31). The probability that the number of scatterings is one is your gap survival probability.

