Plans for Diffractive and Forward Physics Studies at LHC

Albert De Roeck (CERN)

Introduction: LHC & experiments

Detectors

Physics

The Large Hadron Collider (LHC)

Layout of the LEP tunnel including future LHC infrastructures. $\sqrt{S} = 14$ In LEP tunnel

CMS

5 experiments

TOTEM

TI 8

Injection

SPS

ATLAS

(circonf. 26.7 km)

Cleaning

ALICE

Injection

Existing underground buildings

uture constructions

✓Installation shaft

PP collisions at $\sqrt{s} = 14$ TeV

5 experiments

Dump **6**

LHC-B

25 ns bunch spacing

 \Rightarrow 2835 bunches 10^{11} p/bunch

Design Luminosity: 10^{33} cm⁻²s⁻¹ - 10^{34} cm⁻²s $^{Cleaning} \Rightarrow 100 \text{ fb}^{-1}/\text{year}$

23 inelastic events per bunch crossing

Planned Startup: April 2007

The CMS experiment

Detector Coverage

S. Tapprogge/Blois03

|η| < 2.5

 $|\eta| < 0.9$

 $2.4 < \eta < 4$

ATLAS, CMS

- → Tracking and muon system
- → Calorimetry

|η| < 5

ALICE

- → Tracking (TPC, vertexing)
 - o and several other specialized detectors
- → Muon spectrometer
- → Zero-Degree Calorimeter (ZDC)

LHCb

→ Forward spectrometer

 $1.9 < \eta < 4.9$

TOTEM

- → Roman Pots for leading protons
- → Tracking for charged particles

 $3 < |\eta| < 7$

Diffraction and Forward Physics

TOTEM:

- TDR submitted in January 2004/ in the process of approval
- TOTEM stand alone
 - Elastic scattering, Total pp cross section and soft diffraction. Totem has no central detector
- TOTEM together with CMS:
 - Full diffractive program with central activity. TOTEM will be included as a subdetector in CMS (trigger/data stream)

CMS:

- EOI submitted in January 2004:
 - Diffractive and low-x physics part of CMS physics program
 - Diffraction with TOTEM Roman Pots and/or rapidity gaps
- LOI in preparation for new forward detectors (CASTOR, ZDC)
 - Additional options being studied

ATLAS:

- LOI submitted (March) for RP detectors to measure elastic scattering/ total cross sections/luminosity. Diffraction will be looked at later
- ALICE, LHCb: no direct forward projects plans but keeping eyes open.

The TOTEM Experiment

TOTEM physics program: total pp, elastic & diffractive cross section Apparatus: Inelastic Detectors & Roman Pots (2 stations)

High β^* (1540m): Lumi 10^{28} - 10^{31} cm⁻²s⁻¹ (few days or weeks)

>90% of all diffractive protons are seen in the Roman Pots.

Proton momentum measured with a resolution ~10-3

Low β^* : (0.5m): Lumi 10^{33} - 10^{34} cm⁻²s⁻¹

215m: $0.02 < \xi < 0.2$

300/400m: $0.002 < \xi < 0.2$ (RPs in the cold region)

More on TOTEM & acceptance by F. Ferro

Possible Running scenarios (TOTEM TDR)

Scenario (goal)			3 intermediate t ,	4 arge t	
			p_{T} phen.	hard diffract.	elastic
β* [m]	1540	1540		200 - 400	18
N of bunches	43	156		936	2808
Half crossing angle [µrad]	0	0		100 - 200	160
Transv. norm. emitt. [µm rad]	1	1	3.75	3.75	3.75
N of part. per bunch	0.3 x 10 ¹¹	0.6 x 10 ¹¹	1.15 x 10 ¹¹	1.15 × 10 ¹¹	1.15 × 10 ¹¹
RMS beam size at IP [µm]	454	454	880	317 - 448	95
RMS beam diverg. [µrad]	0.29	0.29	0.57	1.6 - 1.1	5.28
Peak luminos. [cm ⁻² s ⁻¹]	1.6×10^{28}	2.4 × 10 ²⁹		$(1 - 0.5) \times 10^{31}$	3.6×10^{32}

HERA experience Q: can this really work with few days/year only? (calibration...)

TOTEM/CMS forward detectors plans

CMS interests under discussion/LOI projects

- CMS central detector
 - Diffractive Gap Trigger (being studied (Nebraska, Wisconsin))
- T2 region
 - Calorimeter (CASTOR)
 - Add θ granularity (silicon, PPAC,...): needs simulation studies
 - Castor trigger
 - So far: one side of CMS (500 kCHF), additional funds requested
 - T2 tracker (part of TOTEM, see TDR, GEM is baseline choice)
 - May need participation from CMS if silicon option would be chosen
 - May need new tracker by CMS depends on TOTEM prototype results
- Roman pot detectors up to 220 m
 - Use TOTEM RPs, available as a CMS subdetector
- Roman pot detectors at 300/400 m
 - Completely new project
 - Needs new resources (there are interested parties in CMS & ATLAS)
- ZDC small project but funding not yet guaranteed part of the LOI
- New detectors in the range $7<\eta<9$??? (20 m from IP) no CMS activity now
 - ⇒ Certainly help welcome on simulation tools, detailed physics studies...

CMS/TOTEM Study

Common working group to study diffraction and forward physics at full LHC luminosity approved by CMS and TOTEM (spring 2002)

(ADR/ K. Eggert organizing so far)

Use synergy for e.g. simulation, physics studies & forward detector option studies.

Common DAQ/Trigger for CMS & TOTEM

Discussions on T2

Common simulation etc...

Share physics studies

CMS/TOTEM is the largest acceptance detector ever built at a hadron collider

Common LOI on diffractive physics (pending LHCC approval) on the time scale of ~1 year

ATLAS LOI

ATLAS submitted a LOI on forward detectors for luminosity measurement and monitoring

Roman Pots at 240 m Cerenkov Counter (LUCID) 5.4 <η< 6.1

ATLAS

Rapidity Gaps at LHC

Number of overlap events versus LHC luminosity

Benefit from experience of HERA experiments!!

Gap moves farther from outgoing proton for smaller \mathbf{x}_{POM}

η of minimum-η particle per event

rapidity gap trigger study

 \Rightarrow G. Snow

Forward Physics Program

Soft & Hard diffraction

- Total cross section and elastic scattering
- Gap survival dynamics, multi-gap events, proton light cone (ppightarrow3 jets+p)
- Diffractive structure: Production of jets, W, J/ψ , b, t, hard photons
- Double Pomeron exchange events as a gluon factory (anomalous W,Z production?)
- Diffractive Higgs production, (diffractive Radion production?)
- SUSY & other (low mass) exotics & exclusive processes

Low-x Dynamics

- Parton saturation, BFKL/CCFM dynamics, proton structure, multi-parton scatteri

New Forward Physics phenomena

- New phenomena such as DCCs, incoherent pion emission, Centauro's

Strong interest from cosmic rays community

- Forward energy and particle flows/minimum bias event structure

Two-photon interactions and peripheral collisions

Forward physics in pA and AA collisions

Use QED processes to determine the luminosity to 1% (pp \rightarrow ppee, pp \rightarrow pp $\mu\mu$)

Many of these studies can be done best with $L \sim 10^{33}$ (or lower)

DPE: \(\beta \) from Di-jet events

P₊>100 GeV/c for different structure functions

 $\beta = \Sigma_{jets} \ E_T \ e^{-\eta}/(\sqrt{s} \ \xi) \ ; \ \xi \ from \ Roman \ Pots; \ E_T \ and \ \eta \ from \ CMS$ High β region probed/ clear differences between different SFs

Diffractive Higgs Production

Exclusive diffractive Higgs production pp \rightarrow p H p : 3-10 fb Inclusive diffractive Higgs production pp \rightarrow p+X+H+Y+p: 50-200 fb

MSSM Higgs

Kaidalov et al., hep-ph/0307064

Cross section factor ~ 10 larger in MSSM (high tan β)

Also:
Study correlations
between the outgoing
protons to analyse the
spin-parity structure of
the produced boson

SM Higgs Studies

Needs Roman Pots at new positions 320 and/or 420 m Technical challenge: "cold" region of the machine, Trigger signals...

- Combined acceptance of
 - → All detectors
 - O Dotted line
 - → 420 m + 215 m
 - Dashed line
 - → 215 m alone
 - O Solid line
 - → 420 m alone
 - Dash-dotted line
- without 308 / 338 m location
 - → 10-15 % loss in acceptance

Curves: Helsinki Group

Dots FAMOS simulati

Detectors at 300m/400m

Detectors in this region requires changes in the machine

Some Major Concerns:

- Physics Case
 - Can we expect to see a good signal over background?
 - ⇒ Signal understood (cross section)
 - ⇒ Needs good understanding of the background (inclusive!)
 - ⇒ Needs more complete simulations (resolutions, etc.)
- Trigger
 - 300m/400m signals of RPs arrive too late for the trigger
 - \Rightarrow Can we trigger with the central detector only for L1? Note: L1 2-jet thresholds E_T > ~150 GeV
- Machine
 - Can detectors (RPs or microstations) be integrated with the machine? Technically there is place available at 330 and 420 m

Of interest for both ATLAS and CMS

Low-x at the LHC

LHC: due to the high energy can reach small values of Bjorken-x in structure of the proton $F(x,Q^2)$

Processes:

- Drell-Yan
- Prompt photon production
- Jet production
- W production

If rapidities below 5 and masses below 10 GeV can be covered \Rightarrow x down to 10⁻⁶-10⁻⁷ Possible with T2 upgrade in TOTEM (calorimeter, tracker) $5 < \eta < 6.7$!

Proton structure at low-x!!
Parton saturation effects?

Summary

- Diffraction and forward physics getting on the physics program of LHC experiments (in particular CMS/TOTEM)
 - Physics Interest
 - Hard (& soft) diffraction, QCD and EWSB (Higgs), New Physics
 - Low-x dynamics and proton structure
 - Two-photon physics: QCD and New Physics
 - Special exotics (centauro's, DCC's in the forward region)
 - Cosmic Rays, Luminosity measurement, (pA, AA...)
 - Probably initial run at high β^* (few days/weeks \Rightarrow 0.1-1 pb⁻¹)
 - Runs at low β^* (10-100 fb⁻¹)
 - Opportunities for present/new collaborators to join
 - ⇒ complete forward detectors for initial LHC lumi