Alikn

@GRID

Dr. Andreas J. Peters CERN/Geneva @ CERN

Contents:

- Present capabilities of AliEn and design limitations
based on experience from

 Implementation work
e Analysis prototyping
* PCD04 running

- Detailed implementation proposals for improvements
towards a 2" generation alice grid middleware as
needed by an end -to-end analysis platform

HL‘E“ Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

Some thesis of me ...

- AliEn has been a very successful project with small
man power thanks to Predrag, Pablo and others ...

- AliEn has been more successful compared to other
official GRID projects because of its 'smallness’

f.e. Perl AliEn Core code 45.000 lines

(f.c. C++ aiod code 21.000 lines)
- AliEn has proven to have made the choices in the right
directions towards a GRID system

... on the other hand ...
- AliEn is still a prototype system under heavy

development not fullfilling '‘professional’ standards
— mainly scalability and security barriers

thEn Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

AliEn security problems

- every user can Kkill via a SOAP call all jobs of other users

- every user can read all files in a storage element knowing
the physical file name

- every user can delete all files existing in a storage element
- every user can call every implemented SOAP function in the
central web services

- every user can Kkill via an AliEn job all jobs in a AliEn site

- every user can spy on the files used in the working directory
by other jobs in the same site

- every user can submit via an AliEn job new jobs

- every user can fill the existing storage space

- every user can use all available CE ressources

- file access by aiod does not use a real authentication

=> this won't stand even a minimal security standard

=> AliEn misses a minimal security model for services

and ressources! Only catalogue information is protected!

- there are solutions for a part of the problems, BUT they are not in place ! -

Rlen Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

AliEn for Physics Analysis

AliEn hits very soon big limitations, if it has to be used for
large scale/multi user analysis:

=> the catalogue layout is not appropriate for analysis
=> it does not support collections and partial file indexing
as needed by other experiments

=> it does not bundle the DB information together

=> the catalogue layout does not scale (DO table)

Example: to find 1000 events(26 files) for analysis in a
given directory, AiEn needs 1 DB call to find the LFN's,
26.000 DB calls to find the location of the files, which are
needed for a 'smart' distributed analysis.

Example: to store 10.000.000 files, the main catalogue table
grows to 1 GB => every insert needs to modify this table!

Alikn

Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID
AliEn Catalogue Layout
LEN/PFEN replica
Mirror
permissions/PFN/SE/name
f. dir. contents
Meta
DO T1
;:Egg/test.r 0ot i:est.roott
/alice/ft/test.root
/alice/f2/test root T2
TO
LEN/GUID/DB
f. all dir + files T3

HL‘E“ Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

- AliEn Catalogue is 'LFN' oriented
=> difficult to fit with other concepts like in POOL ...

- directory branches can be splitted 'by hand' into distributed databases,
but every table can grow to infinite size

- catalogue is not scalable because of big DO table with low information contents
(gzip reduces DB tables to 5% of original size => redundant information!)

- every catalogue access needs a scan of the (potentially huge) DO table

- catalogue contains PFN in host/port/file path format, which can change
- catalogue assigns PFN to SE, which are not really part of the SE

- DO table makes catalogue replication (parallel catalogues) very difficult!

- replica locations are kept in a seperate table => bad performance for
file location resolving, which is essential for analysis tasks

- catalogue does not allow sharing of directories by different users

- catalogue access is done by direct database connections

anEn Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID

Principle:

-no PEN in the file catalogue

- everything is an inode identified by a GUID
- keep tables as small as possible!

How?

Rlen Dr. Andreas J. Peters CERN/Geneva @ CERN

New Catalogue Layout

@GRID
Directory Inode Table 1 testt root
test2.root
””””” - test3.root
/ alic e/ 1 test4.root
/alice/cern.ch/ 2 | testoroot
/alice/software/ 3
/alice/user/ 4 2 ig:g .;882
””””” P test3root
test4.root
testS.root
GUID <=> Dir Inode Table
Organized with GUID
16-bit hash subtables
Dir Inode Link table
1
Src Dst DIN 2 3
1 2
1 3 4
2 2
3 4 \)

GUID + Offset + Type + Permissions
+ SE Locations + ...

\J
SE Location Table

,,

Alice::CERN::LCG 1
Alice::Torino::1.CG 2
Alice::CERN::Lxshare 4
Alice::Prague::PBS 8

,,

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID
DIN Creation

- not every logical directory name produces a new DB table:

Put atleast 1000 files into one table, before creating a new one:

mkdir -nIlnode=1000 /alice/production/0001

/alice/production/0001/0001/galice.root
/alice/production/0001/0002/galice.root
/alice/production/0001/0003/galice.root

}éiice/production/OOOll <N>/galice.root

0001/galice.root
0002/galice.root
0003/galice.root
<N>/galice.root

How do we avoid, that this table grows forever?

Alikn

@GRID

Dr. Andreas J. Peters CERN/Geneva @ CERN

Automatic Table splitting

Example splitting limit 1000 files

|—\|m
S
@)

Dst DIN
2

Dir Inode Link table

n

Irc

— |

Dst DIN
2:3

\\

Last DIN used for new inserts

1

-DIN 142 contain 999 files
-now the user adds 1 more file

-to list all files under DIN 1, the
files in DIN 243 are listed

Alikn

@GRID

Dr. Andreas J. Peters CERN/Geneva @ CERN

Parallel File Catalogues

Some statements:

* A centralized file catalogue gives only good
performance to people who are close
(RTT US-Europe)

* File catalogues are dominated by READ
operations

e After 1°* generation entries are quite 'stable'

A huge DO table disables parallel file catlogues

thEn Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID
Master/Slave File Catalogues
Directory Inode Table Master Directory Inode Table Slave
DIN-M DIN-S
LDN Dnode Mod.Time LDN Dnode Mod.Time
/alice/ 1 12342321 /alice/ 1 12342200
/alice/cern.ch/ 2 12342322 /alice/cern.ch/ 2 12342322
/alice/software/ 3 12342334 /alice/software/ 3 12342334
/alice/user/ 4 12342335 /alice/user/ 4 12342335
2 testl.root 2 testl.root .
e test2soor | Replica
”Ees§4:root test4:r00t UP to date
testb.root testb.root
1 test1.root 1 test1.root)
test3rest | Copy onupdate > testaroot | Replica
test4.root test4root | needs update!
testbroot testb.root

Two operation modes:
lazy: DIN-S entry is synchronized every <x> sec. with DIN-M
realtime: DIN-S is synchronized with every request to DIN-M

Example of usage: run a slave catalogue in America with fast response!

Alikn

@GRID

Dr. Andreas J. Peters CERN/Geneva @ CERN

Meta Data Catalogue

The Meta Data Catalogue can be seperated from the file

Catalogue! How can this be fast?

File Catalogue
Directory Inode Table

/alice/

1
/alice/cern.ch/ 2
/alice/software/ 3
/alice/user/ 4

Meta Data Catalogue

Query Scheme:

1 testl.root 1 testl.root x=10 y=20 <guidl>
test2.root test2.root x=11 y=21 <guid2>

""""" > test3.root test3.root x=12 y=21 <guid3>
test4.root test4d.root x=13 y=24 <guid4>

testbroot testb.root x=14 y=15 <guid5>

2 testl.root 1 testl.root z=10 a=10 <guidl>
test2.root test2.root z=11 a=11 <guid2>

””””” > test3.root test3.root z=12 a=11 <guid3>
testd.root test4d.root z=13 a=14 <guid4>

test5.root test5.root z=14 a=15 <guid5>

TN-1

TN-2

Find all under Dirnode <x>, with TN-1(x>10)and TN-2 (z>10)

Processing for Analysis:

Get List of DINs

- Yy,

List of all GUID/SE Locations
matchiing DINs

List of all guids in TN-1
matching query

List of all guids in TN-2
matching query

List of GUID + SE locations
+ usual LFN information

Rlen Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

VO Catalogue Sharing

Directory Inode Table DB-Mount Table

/alice/
/alice/cern.ch/

1 /alice/ DB type:host:port
2

/alice/software/ 3
4

/alice/test DB type:host:port

/alice/user/ /LHCDb DB type:host:port
/atlas DB type:host:port
/cms DB type host:port
J/LHCDb 1 Remark: don't query this table
J/LHCDb/cern.ch/ 2 for every catal_ogue .
JLHCDb/software/ 3 access, cache it on a daily base f.e.
/LHCDb/user/ 4

Alikn

@GRID

Dr. Andreas J. Peters CERN/Geneva @ CERN

New Catalogue Layout

Summary

 DIN table replaces former DO table
* Much smaller (only directories)

e GUID<=>DIN table
* Allows to find all GUID references in the file catalogue
(POOL compliance)

* GID,UID, permissions, SE locations are written in a
'‘binary' format to reduce the table size

* A DIN<=>DIN tree table allows to find very fast
all subdirectories for fast querying

* Logical directory names can be compounded by one DB
table
* Logical directories can be split over several DB tables

* Collections can be identiefied by a normal DIN containing
GUID entries

?? Where are the PFNs ??

anEn Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID

- all file access is identified by a GUID and a GUID-ticket
- all files are owned by a SE user

- jobs can read by default files only through the aiod, not directly with f.e. rfio

aiod
guid
guid-ticket

PFN
-
resolv.

GUID Ticket Master
(Central Authorization Service)

L.ow level TCP service *soAP too slow, too much XML/Text overhead

File access is not connected with any PERL/SOAP lite => fast!

New Sercure Storage Element Design

Guid<=>PFN
0ab29-0000 /castor/1
0ab29-0001 /castor/2
0ab29-0002 /castor/3
0ab29-0003 /castor/4

0ab29-0004

/castor/b

GuidT lifetime

0ab29-0000 1000023
0ab29-0001 1000234
0ab29-0002 1000435
0ab29-0003 1000346
0ab29-0004 1000346

MSS

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID

New Sercure Storage Element Design

Concept of '‘public' files:

*The autorization scheme is very secure, if the files are only readable
by the aiod use, but produces a file access bottle neck with the aiods

*For HEP use cases, it is not possible to route all file accesses through
aiod's

*Add a 'public' flag to GUIDs which don't need high security:

» Files are stored as readable for group/others
* Files access is rerouted from the aiod to direct MSS access

In general:
esupport only one alien file access method, implement
all others as plugins to aiod => dump all SOAP, HTTP, File, MSS etc.

e Implement a 'dummy' SE to do GUID<=>PFN translation
of web adresses a.s.o

HL‘EH Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

PDCO04 Queue System Layout
Since PDCO04.:

) \ A A - ProcessMonitor
ProcessMonitor A A

A ClusterMonitor

ClusterMonitor

Job Manager

Queue TB. SiteQueue TB.
100 INSERTING Site A RUNNING 1 SAVING 2 ...
101 RUNNING Site B RUNNING 2 SAVING O ...

102 QUEUED

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID

PDCO04 Queue System Layout

Pro:

* Removed synchronization problem between ProcessMonitor DB
and central DB

» Allows easy system view and opening/locking of certain sites

Contra:
* Does not scale because:
* Number of ProcessInfo messages per second is limited in the
central machine/DB
* The QUEUE DB becomes huge with time and every
status/ProcessInfo needs a
manipulation of this table
 Layout is highly centralized!

How to remove the disadvantages?

anEn Dr. Andreas J. Peters CERN/Geneva @ CERN

@GRID

ProcessMonitor A A ProcessInfo reported

only to local CM

ClusterMonitor

Queue TB.

. 101 RUNNING
Site A 102 QUEUED

Broker Server

PreQueue Tables

100 INSERTING || 103 WAITING
105 INSERTING || 205 WAITING
110 INSERTING || 210 WAITING

Table Table

Job Optimizer

Proposal for new Queue System Layout

i

ClusterMonitor

pd

AfterQueue Tables

- ProcessMonitor

L
L

Queue TB.

201 RUNNING
202 QUEUED

98 ERROR E SITE A

99 DONE SITE A

101 ASSIGNED SITE A

102 ASSIGNED SITE A

201 ASSIGNED SITE A

202 ASSIGNED SITE A
Table

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN
@GRID

Proposal for new Queue System Layout

* Jobs with status before 'QUEUED' stay in the central DB tables:
 Table INSERTING
 Table QUEUED
* JobOptimizer + Broker operate on small tables!

* Jobs with are picked up by a SITE are copied into the local site
e QUEUE DB and to the afterQUEUE DB with status ASSIGEND
e All job status before DONE or ERROR are reported only locally
to the ClusterMonitor, also the process information/heart beat

* Jobs changing to DONE or ERROR are removed from the local
QUEUE DB and overwrite the ASSIGNED entry in the
afterQUEUE DB

e The afterQUEUE DB is divided into tables f.e.

T10000 f. queueld 1-9999
T20000 £f. queueld 10000-19999 a.s.o.

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN
@GRID

Implications by a new Queue System Layout

*The mechanism of the site queue table can stay the same, since it just
counts the number of jobs in a certain state. The feature of locking a
site can be kept.

*[f one queries the status of a queued/running job, the master server
has to contact all the ClusterMonitor for a report
=> easy, can be done in parallel, small time overhead.

eEach site needs to run a 'small' DB. The QUEUE table will contain as
many entries as the maximum number of queued or running jobs

*The central DB tables can be kept small and the splitting of INSERTING
and QUEUED jobs allows to do a faster job machting by the Broker.

*The ProcessMonitor's report only local, no central bottleneck anymore.
The reports should be done with a mini TCP protocol, since SOAP is slow
and many instances are expensive in memory (won't work sufficiently
with huge sites (>1000 jobs).

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN
@GRID

Broker Upgrade for Multi-User Support

*T'o do multi-user job scheduling, the broker already sorts jobs for the
matching by a priority value, which is equal for all jobs at the moment.

*One needs to add another DB table, which assigns priorities and job
limitations to users. From this DB table one has to extract priority
values for jobs owned by individual user.

*With every queued job, the priority values have to be recomputed
*The algorithm for this priority value can be very simple:

 Allow a maximum number of jobs per user
 Take into account the history of processed jobs per user

*An upgrade of the Broker scheme is mandatory for multi-user support!

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN
@GRID

Service Communication

*SOAP Server have shown a good reliability and scalability in AliEn,
but the PERL implementation is memory extensive and slow
compared to specialized protocols implemented with plain TCP

*Central Services should access the underlying DB directly (as most
of them do right now)

eAutohrization services (as proposed f. the SE) and Process
Information should be handled by specialized NON-SOAP
services

*To make the SOAP communication save, each service should use
GUID tickets (SE) with a certain validity, which is included in the
SOAP header. SOAP over SSL reduces already by a factor of three.
Once authorized GUID-tickets can be cached for the validity of the
ticket without reauthorization. (Remember a GUID contains also
the production time and IP).

*The authentication service produces GUID tickets with standard
auth. Methods (SSL/GRID certificates, AFS password etc.)

HL‘E“ Dr. Andreas]J. Peters CERN/Geneva @ CERN

@GRID

Catalogue Access

Since catalogue access follows the pattern,
<rare requests> => <a lot of output>

(besides file registration), it can be sufficient to implement the
Catalogue Interface in a SOAP service (factory) without direct DB
connections.

- The complete catalogue can be owned by one user, so the Catalogue
Service can do all the desired actions without using another service
(Authen creates now new tables=> slow).

- The system scales (# of Proxy problem), because 10 SOAP server
can handle 500 users easily, if a ticket based authentication scheme
is used for every SOAP call

- one should consider to use SQLR as a catalogue interface,
it has nice caching features and the code is faster and much smaller
than PERL, which plays a role with 100 of users. Maybe also gSOAP.

PS: 1 made already a test implementation for catalogue access with SQLR

thEn Dr. Andreas]J. Peters CERN/Geneva @ CERN
@GRID

General Service Factory

e Implement a general Service Factory, which is able to start, stop and install all
existing DB and services on demand.

*Every Factory request (tickets) has to be authorized with a central Authorization Service

LDAP parameters are extracted by the service factory, but can be overwritten with local
settings by site administrators

CE Jobs

*CE has to be run as root and individual users have to be mapped to different CE users,
otherwise the system will never provide individual user security.

File Replication

*Use also 'active' file replication - triggered by a running job. This makes the system more
decentralized.

HL‘E“ Dr. Andreas J. Peters CERN/Geneva @ CERN
@GRID

Summary:

-If we just take AliEn as it is and continue, what we
have, we will run against many walls in the near future
without changing the basic architecture later.

-I think, it is worthwhile to reimplement some core
features in AliEn to build a professional system which
can be used in the future.

-I would focus on this basic features before starting
external ends like test environments,

API, web portals etc - considering the size of the core
code, this should not be a long procedure. Otherwise
you will have to redo the same work again and again in
the future, when you change the low-level functionality.

-The development should be decoupled from the PDC04
code.

