Radiative decays at Belle

- Radiative B Decays
- Belle
- Evidence for $b o d\gamma$
- CP asymmetry in $B o X_s \gamma$
- Inclusive $b o s\gamma$ spectrum

First observation of penguin decays 11 years ago by CLEO

- Used to be a hot candidate for New Physics $(|C_7|)$
- BR $\simeq 3.3 \cdot 10^{-4}$ (\simeq theory expectation)
- Today we enter the era of precision measurements
 - Many final states are visible (e.g. $B \rightarrow \phi K \gamma$)
 - Strong bounds on CP asymmetries ($\simeq 0$ in SM)

CKM-matrix:

 $\left(egin{array}{cccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$

- Handle on $|V_{td}/V_{ts}|^2$
- Very rare (10^{-6}) .

KEKB accelerator

P.Koppenburg

Asymmetric $(3.5 \oplus 8.0 \text{ GeV})$ e^+e^- collider at the $\Upsilon(4S)$

KEKB accelerator

P.Koppenburg

KEKB accelerator

P.Koppenburg

Radiative decays at Belle— EP seminar 2004/04/19 – p. 3

The Belle Experiment

The Belle Collaboration

P.Koppenburg

BELLE

Evidence for $b o d\gamma$

[Belle preliminary]

$$B
ightarrow (
ho, \omega) \gamma$$

Reconstruct and add:

- $B^0
 ightarrow
 ho^0(\pi^+\pi^-)\gamma$,
- $B^+
 ightarrow
 ho^+(\pi^+\pi^0)\gamma$,
- $B^0
 ightarrow \omega (\pi^+\pi^-\pi^0)\gamma$

- SM expectations: $\sim 1 \cdot 10^{-6}$
- Exp. limits: $\sim 1-2 \cdot 10^{-6}$
- $\rightarrow\,$ Around the corner

Assuming isospin invariance [Ali et al, ZPC 6, 437]:

$$egin{aligned} \mathrm{BR}(B o (
ho, \omega) \gamma) & \doteqdot & \mathrm{BR}(B^+ o
ho^+ \gamma) \ & = & 2rac{ au_{B^+}}{ au_{B^0}} \mathrm{BR}(B^0 o
ho^0 \gamma) \ & = & 2rac{ au_{B^+}}{ au_{B^0}} \mathrm{BR}(B^0 o \omega \gamma) \end{aligned}$$

$B ightarrow (ho, \omega) \gamma$

Reconstruct and add:

- $B^0 o
 ho^0(\pi^+\pi^-)\gamma$,
- $B^+
 ightarrow
 ho^+(\pi^+\pi^0)\gamma$,
- $B^0
 ightarrow \omega (\pi^+\pi^-\pi^0) \gamma$

- SM expectations: $\sim 1 \cdot 10^{-6}$
- Exp. limits: $\sim 1-2 \cdot 10^{-6}$
- $\rightarrow\,$ Around the corner

- Use isolated γ that don't form a π^0 or a η when combined with another photon
- Use charged tracks clearly identified as π
- $\pi^0 \rightarrow \gamma \gamma$ (within 3σ , forced to π^0 mass)

$B ightarrow (ho, \omega) \gamma$ continuum background

Continuum (u,d,s,c) background (75% at $\Upsilon(4S)$):

- events are more jetty \rightarrow Improved Super-Fox-Wolfram
- vertex position is more centred (*B* flight)
- quality of flavour tag is poorer

$B ightarrow (ho, \omega) \gamma$ specific backgrounds

 $B \rightarrow \rho \gamma$ and $B \rightarrow K^* \gamma$ MC:

- $m_{K^+\pi^-} > 0.96 \; {
 m GeV}/c^2$
- $m_{K^+\pi^0} > 0.92 \, {
 m GeV}/c^2$

$B ightarrow (ho, \omega) \gamma$ specific backgrounds

- $m_{K^+\pi^-} > 0.96~{
 m GeV}/c^2$
- $m_{K^+\pi^0} > 0.92 \, {
 m GeV}/c^2$

$$B
ightarrow
ho \pi^0$$
: Apply helicity cut.

0 14

0.12

0.1

0.08

0.06

0.04

(a)

 $B^0 \ m_{K\pi}$

P.Koppenburg

BELLE

BELLE

P.Koppenburg

P.Koppenburg

BELLE

P.Koppenburg

BFLLF

$\operatorname{CP}\operatorname{asymmetry}\operatorname{in}B o X_s\gamma\operatorname{decays}$ [Nishida et al., hep-ex/0308038]

$A_{\operatorname{CP}} \operatorname{in} B o X_s \gamma$

• Isolated photon, not from π^0 , η • $X_s = Kn\pi$ $(n = 1 \dots 4), \leq 1 \pi^0$, or $X_s = 3K(\pi)$ • $m_{X_s} < 2.1 \text{ GeV}/c^2$ (i.e $E_\gamma > 2.24 \text{ GeV}$)

$A_{\operatorname{CP}} ext{ in } B o X_s \gamma$

• Isolated photon, not from π^0 , η • $X_s = Kn\pi$ $(n = 1 \dots 4), \leq 1 \pi^0$, or $X_s = 3K(\pi)$ • $m_{X_s} < 2.1 \text{ GeV}/c^2$ (i.e $E_\gamma > 2.24 \text{ GeV}$)

Three states: b, \bar{b} , ambiguous \rightarrow three mis-tag rates $w_{b\leftrightarrow\bar{b}} = 0.0206 \pm 0.0027 \quad (K^+\pi^-\gamma \rightarrow K^0_S\pi^-\gamma)$ $w_{A\rightarrow T} = 0.248 \pm 0.020 \quad (K^0_S\pi^+\pi^-\gamma \rightarrow K^0_S\pi^+\pi^0\gamma)$ $w_{T\rightarrow A} = 0.0067 \pm 0.0013 \quad (K^0_S\pi^+\pi^0\gamma \rightarrow K^0_S\pi^+\pi^-\gamma)$

$A_{\operatorname{CP}} ext{ in } B o X_s \gamma$

• Isolated photon, not from
$$\pi^0$$
, η
• $X_s = Kn\pi$ $(n = 1 \dots 4), \leq 1 \pi^0$, or $X_s = 3K(\pi)$
• $m_{X_s} < 2.1 \text{ GeV}/c^2$ (i.e $E_\gamma > 2.24 \text{ GeV}$)

$$A_{ ext{CP}} = rac{1-w_{b\leftrightarrowar{b}}-w_{ ext{T}
ightarrow A}}{(1-w_{ ext{A}
ightarrow ext{T}})(1-2w_{b\leftrightarrowar{b}}-w_{ ext{T}
ightarrow A})}_{ ext{Dilution}} rac{N_b-N_{ar{b}}}{N_b+N_{ar{b}}-rac{w_{ ext{A}
ightarrow ext{T}}}{1-w_{ ext{A}
ightarrow ext{T}}}N_A}}{A_{ ext{CP}}^{ ext{raw}}}$$

Three states: b, \bar{b} , ambiguous \rightarrow three mis-tag rates $w_{b\leftrightarrow\bar{b}} = 0.0206 \pm 0.0027 \quad (K^+\pi^-\gamma \rightarrow K^0_S\pi^-\gamma)$ $w_{A\rightarrow T} = 0.248 \pm 0.020 \quad (K^0_S\pi^+\pi^-\gamma \rightarrow K^0_S\pi^+\pi^0\gamma)$ $w_{T\rightarrow A} = 0.0067 \pm 0.0013 \quad (K^0_S\pi^+\pi^0\gamma \rightarrow K^0_S\pi^+\pi^-\gamma)$

$A_{\operatorname{CP}} \operatorname{in} B o X_s \gamma$

• Isolated photon, not from
$$\pi^0$$
, η
• $X_s = Kn\pi$ $(n = 1 \dots 4), \leq 1 \pi^0$, or $X_s = 3K(\pi)$
• $m_{X_s} < 2.1 \text{ GeV}/c^2$ (i.e $E_\gamma > 2.24 \text{ GeV}$)

P.Koppenburg

Fully Inclusive $b o s\gamma$

[Koppenburg et al., hep-ex/0403004]

Introduction (reminder)

Inclusive decay

- Theoretically clean!
- BR very sensitive new physics.

... but the experiment agrees very well with theory

$${
m BR}({
m theory}) = \left(3.79 \,{}^{+\, 0.36}_{-\, 0.53}
ight) \cdot 10$$

[Hurth, Lunghi, Porod, hep-ph/0312260]

 $BR(PDG) = (3.3 \pm 0.4) \cdot 10^{-4}$

Introduction (reminder)

Experimental motivation

	$\int {\cal L}$	Method	${ m BR} imes 10^{-4}$
CLEO '95	$3~{ m fb}^{-1}$	$Kn\pi$	$2.32 \pm 0.57 \pm 0.35$
Aleph '98	$Z o b \overline{b}$		$3.11\pm0.80\pm0.72$
Belle '01	$6~{ m fb}^{-1}$	$Kn\pi$	$3.36 \pm 0.53 \pm 0.42 {}^{+0.50}_{-0.54}$
CLEO '01	$9~{ m fb}^{-1}$	Inclusive	$3.21 \pm 0.43 \pm 0.27 \stackrel{+0.18}{_{-0.10}}$
(BaBar '02)	$54{ m fb}^{-1}$	Inclusive	$3.88 \pm 0.36 \pm 0.37 \stackrel{+0.43}{_{-0.23}}$

- Error is limited by systematics
- X_s from $Kn\pi$ leads to large model errors
- 65% of the hadronic structure is unknown
- → Use Inclusive method

Experimental motivation

BFLLF

Strategy

P.Koppenburg

Data sets:

- 140 fb⁻¹ ON-resonance
- 15 fb⁻¹ OFF-resonance

Event selection:

- Hadronic events with isolated photon(s) in ECL. $E^* > 1.5 \text{ GeV}$.
- Veto γ from π^0 and η .
- Apply event shape cuts to suppress continuum background.

Optimise cuts to maximise statistical significance in $1.8 \leq E^* \leq 1.9~{ m GeV}$ bin

RELLE

OFF-resonance data subtraction

What remains in $B\overline{B}$ events

Signal Decays of π^0 Decays of η e and Hadrons **Bremsstrahlung Beam-gas** Decays of $\omega(783)$ Decays of J/ψ Other decays

What remains in $B\overline{B}$ events

Signal Decays of π^0 Decays of η e and Hadrons Bremsstrahlung Beam-gas Decays of $\omega(783)$ Decays of J/ψ Other decays

25%

- 52% Measured spectrum
 - 6% Measured spectrum
 - 8% Scaled MC
 - 2% Scaled MC
 - 5% Random triggers
 - 1% Scaled MC
 - 1% Scaled MC (thanks to M. Misiak)
 - 1% Scaled MC

π^0 and η data mass peaks

All 2γ pairs with helicity angle $abs(\cos \alpha) < 0.5$

Bin at $E^* = 1.775 \pm 0.025~{ m GeV}$

P.Koppenburg

π^0 , η spectra in MC and data

π^0 , η spectra in MC and data

P.Koppenburg

π^0 , η spectra in MC and data

P.Koppenburg

Radiative decays at Belle- EP seminar 2004/04/19 - p. 20

Exponential fit with fixed slope (from ON fit) in the E range above endpoint, but before threshold effects: 2.6-4.0 GeV

P.Koppenburg

RFLLF

RELLE

Exponential fit with fixed slope (from ON fit) in the E range above endpoint, but before threshold effects: 2.6-4.0 GeV

 $E^*_{
m corr}=1.0042E^*$

Then scale by 1.0004.

Values obtained from generator-level Pythia study

RFLLF

What remains in $B\overline{B}$ events

Background category

			<u> </u>
Signal	25%		γ
Decays of π^0	52%	 Measured spectrum	$\pi^{\ 0}$
Decays of η	6%	 Measured spectrum	η
e and Hadrons	8%	 Scaled MC	Mis-ID
Beam-gas	5%	 Random triggers	Data
Bremsstrahlung	2%	 Scaled MC	γ
Decays of $\omega(783)$	1%	 Scaled MC	γ
Decays of J/ψ	1%	 Scaled MC (thanks to M. Misi	ak) γ
Other decays	1%	 Scaled MC	γ

Background subtraction

For each of the 5 background categories and for each set of cuts, we correct the MC efficiency using data control samples.

Control samples:

- Main stream (i.e. all events passing cuts)
- π^0 anti-veto (almost pure γ from π^0)
- Partially reconstructed $D \to K \pi \pi^0$ (pure γ from π^0)
- γ from symmetric π^0 decays, with other γ screened (to force random combinations)

For each sample, we have ON, OFF $\rightarrow B\overline{B}$

• $B
ightarrow \pi^0$ yields from data

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data
- π^0 veto for $\pi^0 \rightarrow$ partial D sample

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data

RFI I

P.Koppenburg

- π^0 veto for $\pi^0 \rightarrow$ partial D sample
- π^0 veto for others ightarrow screened π^0

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data
- π^0 veto for $\pi^0 \rightarrow$ partial D sample
- π^0 veto for others ightarrow screened π^0
- Isolation cut efficiencies → main stream

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data

P.Koppenburg

- π^0 veto for $\pi^0 \rightarrow$ partial D sample
- π^0 veto for others ightarrow screened π^0
- Isolation cut efficiencies → main stream
- Calo cluster shapes for photons from anti-veto π^0

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data
- π^0 veto for $\pi^0 \rightarrow$ partial D sample
- π^0 veto for others ightarrow screened π^0
- Isolation cut efficiencies → main stream
- Calo cluster shapes for photons from anti-veto π^0
- Event shapes: π^0 anti-veto $B\overline{B}$ data (checked with other samples).

- $B
 ightarrow \pi^0$ yields from data
- $B
 ightarrow \eta$ yields from data
- π^0 veto for $\pi^0 \rightarrow$ partial D sample
- π^0 veto for others ightarrow screened π^0
- Isolation cut efficiencies \rightarrow main stream
- Calo cluster shapes for photons from anti-veto π^0
- Event shapes: π^0 anti-veto $B\overline{B}$ data (checked with other samples).

ON, OFF and $B\overline{B}$

P.Koppenburg

Endpoint check:

No significant deviation from 0

$B\overline{B}$ subtraction.

Using MC and applying all efficiency and yield corrections.

Raw spectrum after all cuts and background corrections

Signal yield: 24100 ± 2200 events.

P.Koppenburg

P.Koppenburg

Systematics

	Source of systematic error	$ imes 10^{-4}$
	Raw branching fraction	3.51 ± 0.32
	Efficiency and yield scaling	± 0.21
	Choice of fitting functions	± 0.048
	Number of $B\bar{B}$ -events = $(152.0 + 0.6)_{-0.7} \cdot 10^6$	$^{+ \ 0.139}_{- \ 0.160}$
	ON-OFF data subtraction	± 0.026
	Other $B\bar{B}$ photons	± 0.055
	η veto on η	± 0.009
	Signal MC	± 0.090
	Photon detection efficiency	± 0.073
	Energy leakage	$+ 0.036 \\ - 0.000$
7	\ge Sum for partial $\mathcal{B}(b ightarrow q \gamma)$	$\begin{array}{r}+\ 0.29\\-\ 0.30\end{array}$

BELLE

Raw $b ightarrow q \gamma$ in 1.8–2.8 GeV: $(3.51 \pm 0.32 \pm 0.29) \cdot 10^{-4}$

Raw $b \rightarrow q\gamma$ in 1.8–2.8 GeV: $(3.51 \pm 0.32 \pm 0.29) \cdot 10^{-4}$ $\frac{V_{td}}{V_{ts}}$ -Corrected [hep-ph/0312260]: $(3.38 \pm 0.31 \stackrel{+ 0.29}{_{- 0.30}} \pm 0.02) \cdot 10^{-4}$

Raw $b \rightarrow q\gamma$ in 1.8–2.8 GeV: $(3.51 \pm 0.32 \pm 0.29) \cdot 10^{-4}$ $\frac{V_{td}}{V_{ts}}$ -Corrected [hep-ph/0312260]: $(3.38 \pm 0.31 \stackrel{+ 0.29}{_{- 0.30}} \pm 0.02) \cdot 10^{-4}$

Full spectrum: Kagan-Neubert [PLB539:227]: Bigi-Uraltsev [IJMP A17, 4709]: Gambino-Misiak [NP B611, 338]:

 $egin{aligned} &(3.53\pm 0.32 \ {}^{+0.30}_{-0.31} \ {}^{+0.11}_{-0.05})\cdot 10^{-4} \ &(3.56\pm 0.33 \ {}^{+0.30}_{-0.31}\pm 0.04)\cdot 10^{-4} \ &(3.55\pm 0.32 \ {}^{+0.30}_{-0.31} \ {}^{-0.05})\cdot 10^{-4} \end{aligned}$

Raw $b \rightarrow q\gamma$ in 1.8–2.8 GeV: $(3.51 \pm 0.32 \pm 0.29) \cdot 10^{-4}$ $\frac{V_{td}}{V_{ts}}$ -Corrected [hep-ph/0312260]: $(3.38 \pm 0.31 \stackrel{+ 0.29}{_{- 0.30}} \pm 0.02) \cdot 10^{-4}$

Full spectrum: Kagan-Neubert [PLB539:227]: Bigi-Uraltsev [IJMP A17, 4709]: Gambino-Misiak [NP B611, 338]:

 $egin{aligned} &(3.53\pm 0.32 \ {}^{+0.30}_{-0.31} \ {}^{+0.11}_{-0.05})\cdot 10^{-4} \ &(3.56\pm 0.33 \ {}^{+0.30}_{-0.31}\pm 0.04)\cdot 10^{-4} \ &(3.55\pm 0.32 \ {}^{+0.30}_{-0.31} \ {}^{+0.11}_{-0.05})\cdot 10^{-4} \end{aligned}$

Combined: $(3.55 \pm 0.32 + 0.30 + 0.11) - 10^{-4}$

We measure $\sim 95\%$ of the full spectrum.

Comparison

	$\int {\cal L}$	Method	${ m BR} imes 10^{-4}$
CLEO '95	$3{ m fb}^{-1}$	$Kn\pi$	$2.32 \pm 0.57 \pm 0.35$
Aleph '98	Z –	$\rightarrow b \overline{b}$	$3.11 \pm 0.80 \pm 0.72$
Belle '01	$6~{ m fb}^{-1}$	$Kn\pi$	$3.36 \pm 0.53 \pm 0.42 {}^{+0.50}_{-0.54}$
CLEO '01	$9{ m fb}^{-1}$	Inclusive	$3.21 \pm 0.43 \pm 0.27 \stackrel{+0.18}{_{-0.10}}$
(BaBar '02)	$54{ m fb}^{-1}$	Inclusive	$3.88 \pm 0.36 \pm 0.37 {}^{+0.43}_{-0.23}$
Belle '04	$140~{ m fb}^{-1}$	Inclusive	$3.55 \pm 0.32 {}^{+ 0.30 + 0.11}_{- 0.31 - 0.07}$
Theory	[Hurth, Lunghi, ph/0312260]	Porod, hep-	$3.79 {}^{+ 0.36}_{- 0.53}$

Moments

$= 2.252 \pm 0.026 \pm 0.020 \text{ GeV}$ $= 0.0413 \pm 0.0074 \pm 0.0055 \text{ GeV}^2$

Correct for:

Energy resolution (biases mean and broadens)

Raw:

 E_{γ}

- *B* boost (shifts and broadens)
- 100 MeV binning (negligible)

RELLE

Moments

Belle:

 $egin{aligned} \langle E_{\gamma}
angle &= 2.292 \pm 0.026 \pm 0.034 ~{
m GeV} \ \left\langle E_{\gamma}^2
ight
angle &= 0.0305 \pm 0.0074 \pm 0.0063 ~{
m GeV}^2 \end{aligned}$

Correct for:

- Energy resolution (biases mean and broadens)
- *B* boost (shifts and broadens)
- 100 MeV binning (negligible)

RFI I

Moments

Belle:

 $egin{aligned} &\langle E_{\gamma}
angle &= 2.292 \pm 0.026 \pm 0.034~{
m GeV} \ &\langle E_{\gamma}^2
angle &= 0.0305 \pm 0.0074 \pm 0.0063~{
m GeV}^2 \end{aligned}$

$egin{aligned} \mathsf{CLEO:} & & \langle E_\gamma angle &= 2.346 \pm 0.032 \pm 0.011~\mathrm{GeV} \ & & \left< E_\gamma^2 ight> - \left< E_\gamma ight>^2 &= 0.0226 \pm 0.0066 \pm 0.0020~\mathrm{GeV}^2. \end{aligned}$

Conclusion

- Inclusive measurement of $b \rightarrow s\gamma$ at Belle.
 - For the first time $E^* > 1.8~{
 m GeV}$
 - BR: $(3.55 \pm 0.32 \stackrel{+0.30}{_{-0.31}} \stackrel{+0.11}{_{-0.07}}) \cdot 10^{-4}$
 - Moments: $\langle E
 angle = 2.292 \pm 0.026 \pm 0.034~{
 m GeV}$,
 - $\left< E^2 \right> \left< E \right>^2 = 0.0305 \pm 0.0074 \pm 0.0063 ~{
 m GeV}^2$

Conclusion

- Inclusive measurement of $b \rightarrow s\gamma$ at Belle.
 - For the first time $E^* > 1.8~{
 m GeV}$
 - BR: $(3.55 \pm 0.32 \stackrel{+0.30}{_{-0.31}} \stackrel{+0.11}{_{-0.07}}) \cdot 10^{-4}$
 - Moments: $\langle E
 angle = 2.292 \pm 0.026 \pm 0.034~{
 m GeV}$,
 - $\left\langle E^2 \right
 angle \left\langle E
 ight
 angle^2 = 0.0305 \pm 0.0074 \pm 0.0063 ~\mathrm{GeV}^2$
- First evidence for $b
 ightarrow d\gamma$

Conclusion

- Inclusive measurement of $b \rightarrow s\gamma$ at Belle.
 - For the first time $E^* > 1.8~{
 m GeV}$
 - BR: $(3.55 \pm 0.32 \stackrel{+0.30}{_{-0.31}} \stackrel{+0.11}{_{-0.07}}) \cdot 10^{-4}$
 - Moments: $\langle E
 angle = 2.292 \pm 0.026 \pm 0.034~{
 m GeV}$,
 - $\left\langle E^2 \right
 angle \left\langle E
 ight
 angle^2 = 0.0305 \pm 0.0074 \pm 0.0063 ~\mathrm{GeV}^2$
- First evidence for $b
 ightarrow d\gamma$
 - $ullet ext{ BR}(B o (
 ho, \omega) \gamma) = \left(1.8 \, {+0.6 \atop -0.5} \pm 0.1
 ight) \cdot 10^{-6}$
- No CP violation in $B o X_s \gamma$
 - $A_{
 m CP}(m_{X_s} < 2.1~{
 m GeV}/c^2) = (0.2\pm 5.0\pm 3.0)\,\%$

Conclusion

Backup Slides

Fully Inclusive $b o s\gamma$

[Koppenburg et al., hep-ex/0403004]

\checkmark Photons passing good_gamma with $E_9/E_{25} > 0.95$ \nsim $E^* > 1.5~{ m GeV}$ and $-0.5 < \cos heta < 0.88$

\checkmark Photons passing good_gamma with $E_9/E_{25} > 0.95$ \nsim $E^* > 1.5 \, { m GeV}$ and $-0.5 < \cos \theta < 0.88$

 $\not\sim$ π^{0} , η veto: $\mathcal{P}_{\pi^{0}} < 0.10$ and $\mathcal{P}_{\eta} < 0.20$

 \checkmark Photons passing good_gamma with $E_9/E_{25} > 0.95$ \nsim $E^* > 1.5 \, {
m GeV}$ and $-0.5 < \cos heta < 0.88$

 $\not\sim$ π^0 , η veto: $\mathcal{P}_{\pi^0} < 0.10$ and $\mathcal{P}_{\eta} < 0.20$

 \checkmark Event Shapes: $F_{\mathsf{ES}} < -0.28$

- \checkmark Photons passing good_gamma with $E_9/E_{25} > 0.95$ \nsim $E^* > 1.5~{
 m GeV}$ and $-0.5 < \cos heta < 0.88$
- $\not\sim$ π^{0} , η veto: $\mathcal{P}_{\pi^{0}} < 0.10$ and $\mathcal{P}_{\eta} < 0.20$
- earrow Event Shapes: $F_{\mathsf{ES}} < -0.28$
- \checkmark Virtual Calo: $F_{\rm VC} < -2.0$

- \checkmark Photons passing good_gamma with $E_9/E_{25} > 0.95$ \nsim $E^* > 1.5 \, {
 m GeV}$ and $-0.5 < \cos heta < 0.88$
- $\not\sim$ π^{0} , η veto: $\mathcal{P}_{\pi^{0}} < 0.10$ and $\mathcal{P}_{\eta} < 0.20$
- \checkmark Event Shapes: $F_{\mathsf{ES}} < -0.28$
- \checkmark Virtual Calo: $F_{\rm VC} < -2.0$

No lepton cuts!

- \checkmark Photons passing good_gamma with $E_9/E_{25} > 0.95$ \nsim $E^* > 1.5~{
 m GeV}$ and $-0.5 < \cos heta < 0.88$
- $\not\sim$ π^0 , η veto: $\mathcal{P}_{\pi^0} < 0.10$ and $\mathcal{P}_{\eta} < 0.20$
- \checkmark Event Shapes: $F_{\mathsf{ES}} < -0.28$
- \checkmark Virtual Calo: $F_{\rm VC} < -2.0$
 - No lepton cuts!
- Isolation cuts

10

E_9/E_{25} Cluster shape

E_9/E_{25} Cluster shape

After π^0 , η vetoes and isolation cuts

• The E_9/E_{25} distributions in data and MC are very different

 E_9/E_{25} cut η in all ON events after isolation and vetoes

 E_9/E_{25} cut η in π^0 anti-veto events

 E_9/E_{25} cut η in partially reconstructed D events

 E_9/E_{25} cut η in γ -subtracted $B\overline{B}$ events

P.Koppenburg

Radiative decays at Belle- EP seminar 2004/04/19 - p. 35

 E_9/E_{25} cut η in γ -subtracted $B\overline{B}$ events

Radiative decays at Belle— EP seminar 2004/04/19 – p. 35

π^0 partial reconstruction

Decay chain $D^* \rightarrow \pi D^0$, $D^0 \rightarrow \pi^+ K^- \pi^0$ (BR=13%) Partially reconstructed as $\pi^+\pi^+K^-\gamma$

π^0 partial reconstruction

Clean $\pi^0 \rightarrow \gamma$ sample:

- The efficiency of the π^0 probability cut is flat versus the $\gamma \ E^*$
- there is a significant difference between data and MC.

 \Rightarrow ToyMC

BFLLF

π^0 , η , background and sum densities

P.Koppenburg

BELLE

Radiative decays at Belle- EP seminar 2004/04/19 - p. 38

ON, OFF and $B\overline{B}$ spectrum

Endpoint check

$B\overline{B}$ background subtraction

P.Koppenburg

Raw $b
ightarrow s\gamma$ spectrum

Expected statistical significance

Efficiency correction function

Efficiency corrected spectrum

Compared to CLEO

 $(3.06 \pm 0.41 \pm 0.26) \cdot 10^{-4}$

while we get

 $(3.08 \pm 0.26 \,{}^{+\, 0.22}_{-\, 0.24}) \cdot 10^{-4}.$

