Interpretation of D_{sJ}*(2317) and D_{sJ}(2460)

OUTLINE

Spectroscopy of mesons containing a single heavy quark Experimental evidences of charmed states Evaluation of strong and radiative widths Predictions in the beauty sector

Based on a work in collaboration with P. Colangelo (Bari)

Rossella Ferrandes Bari University Torino IFAE, 14 April 2004

Hadrons containing a single heavy quark Q

In the infinite heavy quark mass limit, the heavy quark spin S_Q and the light degrees of freedom angular momentum S_1 decouple

 $Q\overline{q}$ mesons are classified in doublets labeled by S_{I}^{P} :

$$L = 0 \qquad s_{I}^{P} = \frac{1}{2}^{-} \qquad \begin{cases} J^{P} = 0^{-} & D^{0}, D^{+}, D_{s} \\ J^{P} = 1^{-} & D^{*0}, D^{*+}, D^{*}_{s} \end{cases}$$
$$L = 1 \qquad \begin{cases} s_{I}^{P} = \frac{1}{2}^{+} & \begin{cases} J^{P} = 0^{+} & D^{*0}_{0}, D^{*+}_{0}, D^{*}_{s} \\ J^{P} = 1^{+} & D^{*0}_{1}, D^{*+}_{1}, D^{*}_{s1} \end{cases}$$
$$s_{I}^{P} = \frac{3}{2}^{+} & \begin{cases} J^{P} = 1^{+} & D^{0}_{1}, D^{+}_{1}, D^{*}_{s1} \\ J^{P} = 2^{+} & D^{*0}_{2}, D^{*+}_{2}, D^{*}_{s2} \end{cases}$$

 $\begin{pmatrix} J = S_{I} + S_{Q} \\ S_{I} = S_{q} + L \end{pmatrix}$

States differing for the heavy quark spin orientation are degenerate in mass.

Strong decays

$$\Gamma \sim \left|\overline{p}\right|^{2L+1}$$

EXPERIMENTAL OBSERVATIONS OF STATES CONTAINING A CHARM QUARK

 $45.6 \pm 4.4 \pm 6.5 \pm 1.6$

 D_{2}^{*0}

 $2461.6 \pm 2.1 \pm 0.5 \pm 3.3$

FOCUS PLB 586,11 (2004)

2.75

Data

Fit

500

widths

meson	width (MeV)
D_0^{*0}	$276 \pm 21 \pm 18 \pm 60 \text{ (Belle)}[21]$
$D_{sJ}^{*}(2317)$	< 10 (BaBar)
	< 4.6 (Belle)[15]
	< 7 (CLEO)
$D_{1}^{\prime 0}$	$384^{+107}_{-75} \pm 24 \pm 70 \; (\text{Belle})[21]$
$D_{sJ}^{*}(2460)$	< 10 (BaBar)
	< 5.5 (Belle)[15]
	< 7 (CLEO)
D_{1}^{0}	$23.7 \pm 2.7 \pm 0.2 \pm 4.0 \; (\text{Belle})[21]$
	$18.9^{+4.6}_{-3.5}$ (PDG)
$D_{s1}(2536)$	< 2.3 (PDG)
D_2^{*0}	$45.6 \pm 4.4 \pm 6.5 \pm 1.6 \; (ext{Belle})[21]$
	$38.7 \pm 5.3 \pm 2.9 \; ({ m FOCUS})$
	$23\pm5~(\mathrm{PDG})$
D_2^{*+}	$34.1 \pm 6.5 \pm 4.2 \; ({ m FOCUS})$
	25^{+8}_{-7} (PDG)
$D_{sJ}^{*}(2573)$	15^{+5}_{-4} (PDG)

ratios

	Belle	CLEO
$\frac{\Gamma\left(D_{s0}^{*}\rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{s0}^{*}\rightarrow D_{s}\pi^{0}\right)}$	(*) < 0.9 < 0.18	< 0.059
$\frac{\Gamma(D'_{s1} \rightarrow D_s \gamma)}{\Gamma(D'_{s1} \rightarrow D^*_s \pi^0)}$	$(\star) 0.38 \pm 0.19 \ 0.55 \pm 0.13 \pm 0.08$	< 0.49
$\frac{\Gamma\left(D_{s1}^{\prime}\rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{s1}^{\prime}\rightarrow D_{s}^{*}\pi^{0}\right)}$	(*) < 0.4 < 0.31	< 0.16
$\frac{\Gamma(D'_{s1} \rightarrow D^*_s \gamma)}{\Gamma(D'_{s1} \rightarrow D_s \gamma)}$	(*) < 1.1	

Spin-parity assignment for D_{sJ}*(2317)

observation of natural spin-parity: 0⁺, 1⁻, 2⁺... $D_{\rm s}\pi^0$ decay angular analysis (BaBar) $D_{\rm s}\gamma$ decay 1⁻ assignment uncorrected corrected 2 not observed not favoured 1.5 1.5 1 **BaBar angular analysis** 0.5 0.5 0.5 consistent with J=0 0 cos v cos v cosv These arguments support J^P=0⁺ assignment Spin-parity assignment for D_{sJ}(2460) helicity distribution (Belle) 12 observation of spin-parity: 0⁻, 1⁺, 2⁻... 10 $D_{
m s}^{*}\pi^{0}$ decay 8 Events/ (0.25) 6 observation of J=0 assignment ruled out $D_{c}\gamma$ decay 4 2 **Belle angular analysis** 0 consistent with J=1 -0.5 0.5 n -1 cos(θ_{Ds})

These arguments support J^P=1⁺ assignment

INTERPRETATIONS

For $s_1^P = 1/2^+$ strange states **potential models** typically predict **masses** larger than the experimental values, above the DK and D^{*}K thresholds

So s₁^P= 1/2⁺ states were expected to have large widths

In the canonical interpretation as cs states, the experimental resonances are narrow because of isospin violation.

Different interpretations:

- 4-quark state (H. Y. Cheng et al. 03)
- *DK* molecule (Barnes, Close, Lipkin 03)
- $D_s \pi$ atom (Szczepaniak 03)
- ...

CDF looks for isospin partners in D_s⁺ π ⁻and D_s⁺ π ⁺ systems.

To identify the experimental resonances with $c\overline{q}$ states of $S_1^P=1/2^+$ doublet we must

- calculate strong widths
- calculate radiative widths

obtaining

for non strange states:
 large widths (~ 100 MeV)

for strange states:

width < experimental resolution

• $\frac{\Gamma_{e.m.}}{\Gamma_{strong}}$ according to experimental values

Effective lagrangian describing interactions between heavy mesons and pseudoscalar light mesons based on

heavy quark spin-flavour symmetry
chiral symmetry for light mesons

$$S_{a} = \frac{1 + \varkappa}{2} \Big[P_{1a}^{\mu} \gamma_{\mu} \gamma_{5} - P_{0a} \Big]$$

$$T_{a}^{\mu} = \frac{1 + \varkappa}{2} \Big[D_{2a}^{\mu\nu} \gamma_{\nu} - \sqrt{\frac{3}{2}} D_{1a\nu} \gamma_{5} \Big(g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - \nu^{\mu}) \Big) \Big]$$

 $H_{a} = \frac{1 + \varkappa}{2} \left[P_{a\mu} \gamma^{\mu} - P_{a} \gamma_{5} \right]$

$$\xi = \exp\left[\frac{i\pi_{a}T^{a}}{f}\right] \qquad A_{\mu} = \frac{1}{2}\left(\xi^{+}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{+}\right) \qquad \pi_{a}T^{a} = \begin{pmatrix}\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+}\\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0}\\ K^{-} & \overline{K}^{0} & -\frac{2}{\sqrt{6}}\eta\end{pmatrix}$$

Strong decays

Non strange states

$$D_0^{*0} \rightarrow D^+ \pi^-$$

$$L_{eff} = ihTr \left\{ S_{1}\gamma_{\mu}\gamma_{5}A_{12}^{\mu}\overline{H}_{2} \right\}$$
$$\left| h \right| = 0.6 \pm 0.2 \quad (\text{QCD sum rules}_{\text{P. Colangelo et al., PRD (95)}}$$

Considering also

$$D^{0}\pi^{0}$$
 decay
$$\Gamma_{teor}\left(D_{0}^{*0}\right) = (300 \pm 60)MeV$$
Experimentally:
 $\Gamma_{sper}\left(D_{0}^{*0}\right) = (276 \pm 21 \pm 18 \pm 60)MeV$

Analogously for the axial state:

$$\Gamma_{teor} \left(D_{1}^{\prime 0} \right) = \left(264 \pm 45 \right) MeV$$

$$\Gamma_{sper} \left(D_{1}^{\prime 0} \right) = \left(384_{-75}^{+107} \pm 24 \pm 70 \right) MeV$$

 D_{0}^{*0}

$$\left[\frac{\Gamma(D_1^{\prime 0})}{\Gamma(D_0^{\ast 0})}\right]_{teor} = 0.9 \pm 0.3 \qquad \left[\frac{\Gamma(D_1^{\prime 0})}{\Gamma(D_0^{\ast 0})}\right]_{sper} = 1.4 \pm 0.5$$

 D^+

h

 $\Gamma_{teor}\left(D_{0}^{*0}\rightarrow D^{+}\pi^{-}\right)=\left(200\pm40\right)MeV$

Strange states

$$D_{s0}^{*} \rightarrow D_{s}\pi^{0}$$

$$D_{s1}^{*} \rightarrow D_{s}^{*}\pi^{0}$$
Isospin violating decays
$$L_{eff} = \frac{f^{2}}{8}Tr\left\{\partial^{\mu}\Sigma^{+}\partial_{\mu}\Sigma\right\} + \frac{vTr\left\{M^{+}\Sigma + M\Sigma^{+}\right\}}{\sqrt{3}} + \dots$$

$$\pi^{0} - \eta \text{ mixing}$$

$$\left\langle\pi^{0}|\eta\right\rangle = -\frac{4v}{f^{2}}\frac{m_{u} - m_{d}}{\sqrt{3}}$$

$$\Sigma = \exp\left[\frac{2i\pi_{a}T^{a}}{f}\right]$$

$$\Gamma(D'_{s1} \to D^*_{s} \pi^{0}) = \frac{1}{16\pi} \frac{h^{2}}{f^{2}} \frac{M_{D^*_{s1}}}{M_{D'_{s1}}} \left(m^{2}_{\pi^{0}} + |\vec{q}|^{2} \right) |\vec{q}| \left(\frac{m_{u} - m_{d}}{\frac{m_{u} + m_{d}}{2} - m_{s}} \right)^{2} \frac{1}{3} \left(2 + \frac{\left(M^{2}_{D'_{s1}} + M^{2}_{D^*_{s}} - m^{2}_{\pi^{0}} \right)^{2}}{4M^{2}_{D'_{s1}} M^{2}_{D^*_{s}}} \right)$$

$$\Gamma_{teor} \left(D'_{s1} \to D^*_{s} \pi^{0} \right) = (7 \pm 1) KeV$$

$$\frac{1}{43.7} \quad \text{Gasser and Leutwyler,} \\ \text{NPB (1985)}$$
Analogously for the scalar state:
$$\Gamma_{teor} \left(D^*_{s0} \to D_{s} \pi^{0} \right) = (7 \pm 1) KeV$$

$$15$$

-

Summary of the results:

meson	experimental width (MeV)	evaluated width (MeV)
D_0^{*0}	$276 \pm 21 \pm 18 \pm 60$ (Belle)	300 ± 60
$D_{sJ}^{*}(2317)$	< 10 (BaBar)	
	< 4.6 (Belle)	$(8 \pm 1) \times 10^{-3}$
	< 7 (CLEO)	
$D_{1}^{\prime 0}$	$384^{+107}_{-75} \pm 24 \pm 70$ (Belle)	264 ± 45
$D'_{sJ}(2460)$	< 10 (BaBar)	
	< 5.5 (Belle)	$(12 \pm 1) \times 10^{-3}$
	< 7 (CLEO)	

	Belle	CLEO	teoria
$\frac{\Gamma\left(D_{s0}^{*}\rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{s0}^{*}\rightarrow D_{s}\pi^{0}\right)}$	(*) < 0.9 < 0.18	< 0.059	0.1
$\frac{\Gamma(D'_{s1} \rightarrow D_s \gamma)}{\Gamma(D'_{s1} \rightarrow D^*_s \pi^0)}$	$(\star) 0.38 \pm 0.19 \ 0.55 \pm 0.13 \pm 0.08$	< 0.49	0.5
$\frac{\Gamma\left(D_{s1}^{\prime}\rightarrow D_{s}^{*}\gamma\right)}{\Gamma\left(D_{s1}^{\prime}\rightarrow D_{s}^{*}\pi^{0}\right)}$	$(\star) < 0.4 < 0.31$	< 0.16	0.2
$\frac{\Gamma(D'_{s1} \rightarrow D^*_s \gamma)}{\Gamma(D'_{s1} \rightarrow D_s \gamma)}$	(*) < 1.1		0.4

Overall agreement with experiments supports our interpretation

Predictions for beauty mesons belonging to 1/2⁺ doublet

$$m_{M} = m_{Q} + \overline{\Lambda} + \frac{\Delta m_{M}^{2}}{2m_{Q}} + \dots \qquad \Delta m_{M}^{2} = -\lambda_{1} + d_{M}\lambda_{2}$$

$$\frac{1}{2} \quad m_{M} = m_{Q} + \overline{\Lambda} - \frac{\lambda_{1}}{2m_{Q}} + d_{M}\frac{\lambda_{2}}{2m_{Q}} \qquad \qquad \frac{1}{2} \quad m_{M}^{*} = m_{Q} + \overline{\Lambda}' - \frac{\lambda_{1}'}{2m_{Q}} + d_{M}\frac{\lambda_{2}'}{2m_{Q}}$$

M=P, V

M=S, A

$$\widetilde{m}_{[b]}^* - \widetilde{m}_{[b]} = \overline{\Lambda}' - \overline{\Lambda} - \frac{\lambda'_1 - \lambda_1}{2m_b}$$
$$\widetilde{m}_{[c]}^* - \widetilde{m}_{[c]} = \overline{\Lambda}' - \overline{\Lambda} - \frac{\lambda'_1 - \lambda_1}{2m_c}$$

$$\widetilde{m}_{[b]}^* = \widetilde{m}_{[b]} + \widetilde{m}_{[c]}^* - \widetilde{m}_{[c]}$$

$$\widetilde{m}_{[b]}^{*} = \widetilde{m}_{[b]} + \widetilde{m}_{[c]}^{*} - \widetilde{m}_{[c]}$$

$$m(B'_{s1}) - m(B_{s0}^{*}) \cong \frac{m_{c}}{m_{b}} [m(D'_{s1}) - m(D_{s0}^{*})]$$

$$m(B'_{s1}) = 5762 MeV$$

Analogously for non strange states: $m\left(B_{0}^{*0}\right) = 5710 \ MeV$ $m\left(B_{1}^{*0}\right) = 5744 \ MeV$

$$m(B) + m(K) = 5.73 \, GeV$$

$$m(B^*) + m(K) = 5.82 \, GeV$$

$$B_{s0}^* \not\rightarrow BK$$

$$B_{s1}^* \not\rightarrow B^*K$$

meson	mass (MeV/c²)	width (MeV/c²)
B_0^{*0}	5710	330 ± 24
B_{s0}^{*}	5721	$(10.5\pm 0.5) imes 10^{-3}$
$B_1^{\prime 0}$	5744	204 ± 14
B_{s1}'	5762	$(11 \pm 0.5) \times 10^{-3}$

$$\frac{\Gamma(B_{s0}^* \to B_s^* \gamma)}{\Gamma(B_{s0}^* \to B_s \pi^0)} = 0.4$$
$$\frac{\Gamma(B_{s1}' \to B_s \gamma)}{\Gamma(B_{s1}' \to B_s^* \pi^0)} = 0.3$$
$$\frac{\Gamma(B_{s1}' \to B_s^* \gamma)}{\Gamma(B_{s1}' \to B_s^* \pi^0)} = 0.3$$
$$\frac{\Gamma(B_{s1}' \to B_s^* \gamma)}{\Gamma(B_{s1}' \to B_s^* \gamma)} = 1$$

CONCLUSIONS

Charm sector

Strange states:

Experimental measurements consistent with canonical interpretation

measurements (~100 MeV)

Beauty sector

•Predictions of masses and widths for beauty mesons belonging to 1/2⁺ doublet

bs states could be discovered analyzing LEP data

		. D		
L	s_l^P	j^{P}	cq mesons	bq mesons
0	$\frac{1}{2}^{-}$	0^{-}	D^0, D^+, D_s^+	B^0, B^+, B^0_s
0	$\frac{1}{2}^{-}$	1^{-}	D^{*0}, D^{*+}, D^{*+}_s	B^{*0}, B^{*+}, B^{*0}_s
1	$\frac{1}{2}^{+}$	0^+	$D_0^{*0}, D_0^{*+}, D_{s0}^{*+}$	$B_0^{*0}, B_0^{*+}, B_{s0}^{*0}$
1	$\frac{1}{2}^+$	1^{+}	$D_1^{\prime 0}, D_1^{\prime +}, D_{s1}^{\prime +}$	$B_1^{\prime 0}, B_1^{\prime +}, B_{s1}^{\prime 0}$
1	$\frac{3}{2}^{+}$	1+	D_1^0, D_1^+, D_{s1}^+	B_1^0, B_1^+, B_{s1}^0
1	$\frac{3}{2}^+$	2^{+}	$D_2^{*0}, D_2^{*+}, D_{s2}^{*+}$	$B_2^{*0}, B_2^{*+}, B_{s2}^{*0}$

$$m(D^{*+}) - m(D^{+}) = 141 MeV$$

$$m(D^{*0}) - m(D^{0}) = 142 MeV$$

$$m(D^{*+}_{s}) - m(D^{+}_{s}) = 144 MeV$$

$$m(B^{*0}) - m(B^{0}) = 46 MeV$$

$$m(B^{*0}_{s}) - m(B_{s}) = 47 MeV$$

Mesons belonging to

$$s_{l}^{P} = \frac{1}{2} \quad \text{doublet}$$

Analogous situation for
$$\frac{1}{2}^+$$
 and $\frac{3}{2}^+$ doublets

experimental masses

Masse dei mesoni con un quark pesante charm o beauty. Con (*) sono indicati i valori misurati da Belle, con (**) quelli misurati da BaBar, con (•) sono indicati i valori di CLEO, e con (••) quelli di FOCUS; tutti gli altri valori sono quelli riportati sul PDG.

decay	$\mathcal{B},10^{-4}$
$B \to \overline{D}D^*_{sJ}(2317) \left[D_s \pi^0\right]$	$8.5^{+2.1}_{-1.9}\pm2.6$
$B \to \overline{D}D^*_{s,I}$ (2317) $[D^*_s\gamma]^{-1}$	$2.5^{+2.0}_{-1.8} \ (< 7.5)$
$B \to \overline{D}D'_{s,I}(2460) \left[D^*_s \pi^0\right]$	$17.8^{+4.5}_{-3.9}\pm5.3$
$B \to \overline{D}D'_{s,I}(2460) [D_s\gamma]$	$6.7^{+1.3}_{-1.2}\pm2.0$
$B \to \overline{D}D'_{sJ}(2460) \ [D_s^*\gamma]$	$2.7^{+\overline{1.8}}_{-1.5} \ (< 7.3)$
$B \rightarrow \overline{D}D'_{sJ}$ (2460) $[D_s\pi^+\pi^-]$	< 1.6
$B \to \overline{D}D'_{sJ}(2460) \left[D_s \pi^0\right]$	< 1.8

$$\Gamma_{1} = \frac{1}{2\pi} \frac{\boldsymbol{h}^{2}}{\boldsymbol{f}^{2}} \frac{\boldsymbol{M}_{D^{+}}}{\boldsymbol{M}_{D_{0}^{*0}}} \left(\boldsymbol{m}_{\pi^{+}}^{2} + |\boldsymbol{\bar{q}}|^{2}\right) |\boldsymbol{\bar{q}}|$$

$$\Gamma_{2} = \frac{1}{2\pi} \frac{\boldsymbol{h}^{2}}{\boldsymbol{f}^{2}} \frac{1}{\boldsymbol{M}_{D_{0}^{*0}}} (\boldsymbol{p} \cdot \boldsymbol{q})^{2} |\boldsymbol{\bar{q}}|$$

$$\Gamma_{1} = \frac{1}{2\pi} \frac{h^{2}}{f^{2}} \frac{M_{D^{*+}}}{M_{D^{*0}}} \left(m_{\pi^{+}}^{2} + \left|\overline{q}\right|^{2}\right) \overline{q} \left|\frac{1}{3} \left(2 + \frac{\left(M_{D^{*0}}^{2} + M_{D^{*+}}^{2} - m_{\pi^{+}}^{2}\right)^{2}}{4M_{D^{*0}}^{2}M_{D^{*+}}^{2}}\right)$$
$$\Gamma_{2} = \frac{1}{2\pi} \frac{h^{2}}{f^{2}} \frac{1}{M_{D^{*0}}^{0}M_{D^{*+}}} \left(p \cdot q\right)^{2} \left|\overline{q}\right| \frac{1}{3} \left(2 + \frac{\left(M_{D^{*0}}^{2} + M_{D^{*+}}^{2} - m_{\pi^{+}}^{2}\right)^{2}}{4M_{D^{*0}}^{2}M_{D^{*+}}^{2}}\right)$$

$$D_1^{\prime 0}
ightarrow D^{*+} \pi^-$$

$$\Gamma_{1} = \frac{1}{16\pi} \frac{h^{2}}{f^{2}} \frac{M_{D_{s}}}{M_{D_{s0}^{*}}} \left(m_{\pi^{0}}^{2} + |\bar{q}|^{2}\right) \bar{q} \left[\frac{m_{u} - m_{d}}{\frac{m_{u} + m_{d}}{2} - m_{s}} \right]^{2}$$
$$\Gamma_{1} = \frac{1}{16\pi} \frac{h^{2}}{f^{2}} \frac{1}{M_{D_{s0}^{*}}} M_{D_{s}} (p \cdot q)^{2} |\bar{q}| \left[\frac{m_{u} - m_{d}}{\frac{m_{u} + m_{d}}{2} - m_{s}} \right]^{2}$$

$$D_{s0}^* \rightarrow D_s \pi^0$$

$$\Gamma_{1} = \frac{1}{16\pi} \frac{h^{2}}{f^{2}} \frac{M_{D_{s}^{*}}}{M_{D_{s1}^{*}}} \left(m_{\pi^{0}}^{2} + \left| \vec{q} \right|^{2} \right) \left| \vec{q} \left(\frac{m_{u} - m_{d}}{\frac{m_{u} + m_{d}}{2} - m_{s}} \right)^{2} \frac{1}{3} \left(2 + \frac{\left(M_{D_{s1}}^{2} + M_{D_{s}^{*}}^{2} - m_{\pi^{0}}^{2} \right)^{2}}{4M_{D_{s1}^{*}}^{2} M_{D_{s}^{*}}^{2}} \right)$$

$$D_{s1}^{*} \rightarrow D_{s}^{*} \pi^{0}$$

$$\Gamma_{2} = \frac{1}{16\pi} \frac{h^{2}}{f^{2}} \frac{1}{M_{D_{s}^{*}} M_{D_{s1}^{*}}} \left(p \cdot q \right) \left| \vec{q} \left(\frac{m_{u} - m_{d}}{\frac{m_{u} + m_{d}}{2} - m_{s}} \right)^{2} \frac{1}{3} \left(2 + \frac{\left(M_{D_{s1}^{*}}^{2} + M_{D_{s}^{*}}^{2} - m_{\pi^{0}}^{2} \right)^{2}}{4M_{D_{s1}^{*}}^{2} - m_{\pi^{0}}^{2} \right)^{2}$$

$$D_{s0}^* \to D_s^* \gamma$$

$$\Gamma_{1} = 8\alpha (\boldsymbol{e}_{s} \boldsymbol{\mu} \boldsymbol{g}_{V})^{2} \frac{\boldsymbol{M}_{\boldsymbol{D}_{s}^{*}}}{\boldsymbol{M}_{\boldsymbol{D}_{s}^{*}}^{3}} \left(\frac{\boldsymbol{f}_{\phi}}{\boldsymbol{m}_{\phi}}\right)^{2} |\boldsymbol{\overline{q}}| (\boldsymbol{p} \cdot \boldsymbol{q})^{2}$$

$$\Gamma_{2} = 8\alpha (\boldsymbol{e}_{s} \boldsymbol{\mu} \boldsymbol{g}_{V})^{2} \frac{1}{\boldsymbol{M}_{\boldsymbol{D}_{s}^{*}}} \boldsymbol{M}_{\boldsymbol{D}_{s}^{*}} \left(\frac{\boldsymbol{f}_{\phi}}{\boldsymbol{m}_{\phi}}\right)^{2} |\boldsymbol{\overline{q}}| (\boldsymbol{p} \cdot \boldsymbol{q})^{2}$$

$$D'_{s1} \rightarrow D_s \gamma$$

$$\Gamma_{1} = \frac{8}{3} \alpha (\boldsymbol{e}_{s} \mu \boldsymbol{g}_{V})^{2} \frac{\boldsymbol{M}_{\boldsymbol{D}_{s}}}{\boldsymbol{M}_{\boldsymbol{D}_{s1}}^{3}} \left(\frac{\boldsymbol{f}_{\phi}}{\boldsymbol{m}_{\phi}}\right)^{2} |\boldsymbol{\overline{q}}| (\boldsymbol{p} \cdot \boldsymbol{q})^{2}$$

$$\Gamma_{2} = \frac{8}{3} \alpha (\boldsymbol{e}_{s} \mu \boldsymbol{g}_{V})^{2} \frac{1}{\boldsymbol{M}_{\boldsymbol{D}_{s1}}} \left(\frac{\boldsymbol{f}_{\phi}}{\boldsymbol{m}_{\phi}}\right)^{2} |\boldsymbol{\overline{q}}| (\boldsymbol{p} \cdot \boldsymbol{q})^{2}$$

$$D'_{s1} \rightarrow D^*_s \gamma$$

$$\Gamma = \frac{8}{3} \alpha (\boldsymbol{e}_{s} \boldsymbol{\mu} \boldsymbol{g}_{V})^{2} \frac{1}{\boldsymbol{M}_{\boldsymbol{D}_{s}^{*}} \boldsymbol{M}_{\boldsymbol{D}_{s1}^{'}}} \left(\frac{\boldsymbol{f}_{\phi}}{\boldsymbol{m}_{\phi}}\right)^{2} |\boldsymbol{\overline{q}}| (\boldsymbol{p} \cdot \boldsymbol{q})^{2}$$

$$\Gamma_{1} = 4\alpha (e_{u}\mu g_{V})^{2} \frac{M_{D^{*0}}}{M_{D^{*0}}^{3}} \left(\frac{f_{\rho^{0}}}{m_{\rho^{0}}} + \frac{f_{\omega}}{m_{\omega}} \right)^{2} |\overline{q}| (p \cdot q)^{2}$$

$$\Gamma_{2} = 4\alpha (e_{u}\mu g_{V})^{2} \frac{1}{M_{D^{*0}}^{0}} M_{D^{*0}} \left(\frac{f_{\rho^{0}}}{m_{\rho^{0}}} + \frac{f_{\omega}}{m_{\omega}} \right)^{2} |\overline{q}| (p \cdot q)^{2}$$

$$\Gamma_{2} = 4\alpha (e_{u}\mu g_{V})^{2} \frac{1}{M_{D^{*0}}^{0}} M_{D^{*0}} \left(\frac{f_{\rho^{0}}}{m_{\rho^{0}}} + \frac{f_{\omega}}{m_{\omega}} \right)^{2} |\overline{q}| (p \cdot q)^{2}$$

$$D_0^{*0} \rightarrow D^{*0} \gamma$$

$$\Gamma_{1} = \frac{4}{3} \alpha (e_{u} \mu g_{V})^{2} \frac{M_{D^{0}}}{M_{D^{1}}^{3}} \left(\frac{f_{\rho^{0}}}{m_{\rho^{0}}} + \frac{f_{\omega}}{m_{\omega}} \right)^{2} |\overline{q}| (p \cdot q)^{2}$$

$$\Gamma_{2} = \frac{4}{3} \alpha (e_{u} \mu g_{V})^{2} \frac{1}{M_{D^{1}}^{0}} M_{D^{0}} \left(\frac{f_{\rho^{0}}}{m_{\rho^{0}}} + \frac{f_{\omega}}{m_{\omega}} \right)^{2} |\overline{q}| (p \cdot q)^{2}$$

$$\Gamma = (50 \pm 13) KeV$$

$$D_{1}^{\prime 0} \rightarrow D^{0} \gamma$$

$$\frac{D_{1}^{*0} \rightarrow D^{*0} \gamma}{M_{D_{1}^{*0}} M_{\rho^{*0}}} = \frac{4}{3} \alpha (e_{u} \mu g_{v})^{2} \frac{1}{M_{D_{1}^{*0}} M_{\rho^{*0}}} \left(\frac{f_{\rho^{0}}}{m_{\rho^{0}}} + \frac{f_{\omega}}{m_{\omega}}\right)^{2} |\overline{q}| (p \cdot q)^{2}$$

 $\Gamma = 27 \; KeV$

$$\left\langle \left(\frac{1}{2}^{-}\right) \middle| J_{em}^{\mu} \left(\frac{1}{2}^{+}\right) \right\rangle = ee_{q} \left\langle \left(\frac{1}{2}^{-}\right) \middle| \overline{q} \gamma^{\mu} q \left| \left(\frac{1}{2}^{+}\right) \right\rangle + ee_{c} \left\langle \left(\frac{1}{2}^{-}\right) \middle| \overline{c} \gamma^{\mu} c \left| \left(\frac{1}{2}^{+}\right) \right\rangle \right\rangle$$

$$\left\langle \left(\frac{1}{2}^{-}\right) \middle| \overline{q} \gamma^{\mu} q \left| \left(\frac{1}{2}^{+}\right) \right\rangle \right\rangle \approx \sum_{V,\lambda} \left\langle \left(\frac{1}{2}^{-}\right) V(q,\eta^{(\lambda)}) \middle| \left(\frac{1}{2}^{+}\right) \right\rangle \frac{i}{q^{2} - m_{V}^{2}} \left\langle 0 \middle| \overline{q} \gamma^{\mu} q \middle| V(q,\eta^{(\lambda)}) \right\rangle$$

$$\left\langle D_{s}^{*}(p,\varepsilon)\gamma(q,\widetilde{\varepsilon})\right| D_{s0}^{*}(p+q) \right\rangle \cong \\ \cong ee_{s} \sum_{\lambda} \left\langle D_{s}^{*}(p,\varepsilon)\phi(q,\eta^{(\lambda)})\right| D_{s0}^{*}(p+q) \right\rangle \frac{i}{q^{2}-m_{\phi}^{2}} \left\langle 0\left|\overline{s}\gamma^{\mu}s\right|\phi(q,\eta^{(\lambda)})\right\rangle \widetilde{\varepsilon}_{\mu}^{*}$$