Torino, 14/04/2004

Soft-Collinear Effective Theory: overview and applications

Enrico Lunghi (University of Zurich)

E.L., D. Pirjol, D. Wyler, Nucl. Phys. B649 (2003) 349, [hep-ph/0210091] A. Hardmeier, E.L., D. Pirjol, D. Wyler, Nucl. Phys. B, [hep-ph/0307171] energetic particles ($Q\!\gg\!\Lambda_{\rm QCD}$)

★ DIS, Drell-Yan, Jet production, …

QCD-improved factorisation (BBNS) [Beneke, Buchalla, Neubert, Sachrajda]

Proof of factorisation requires the analysis of IR divergencies of Feynman diagrams order by order in perturbation theory

Tools: Identification of the Regions & Threshold Expansion

Assuming tools are correct, one can systemise BBNS using an EFT approach:

Soft Collinear Effective Theory (SCET)

[Bauer, Fleming, Luke, Pirjol, Stewart; Beneke, Chapovsky, Diehl, Feldmann; Hill, Neubert]

Basic ideaThe relevant scales are: m_W^2 m_b^2 Λ_{oCD} Λ_{oCD}^2 perturbative
(integrate out)perturbative
non-perturbative

* If we supplement the integration of perturbative modes with an expansion in $\Lambda_{_{QCD}}/m_{_b}$ (built in in T.E.) we obtain (not always) amplitudes factorised in terms of simple objects (Form Factors and Light-cone wave functions)

$$m_{W} \gg m_{b} : A(B \rightarrow X) = \langle X | H_{eff} | B \rangle = \sum_{i} \underbrace{C_{i}(\mu_{b})}_{SD} \langle X | O_{i}(\mu_{b}) | B \rangle$$

 $m_b \gg \Lambda_{_{QCD}}$: scales are of the same order of the external momenta

Wilson coefficients

Jet functions

Form Factors Wave functions

$$\begin{split} m_b &\gg \sqrt{\Lambda_{QCD}} \, m_b \gg \Lambda_{QCD} \\ &\bigstar \text{ The scales } m_b^2 \text{ and } \Lambda_{QCD} \, m_b \text{ are perturbative:} \\ &\langle X | O(\mu_b) | B \rangle = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle + O(\frac{\Lambda_{QCD}}{m_b}) \, J(\Lambda_{QCD}) \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle + O(\frac{\Lambda_{QCD}}{m_b}) \, J(\Lambda_{QCD}) \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \ast \langle X | \overline{O}(\Lambda_{QCD}) | B \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle \\ & = C(\sqrt{\Lambda_{QCD}} \, m_b) \, J(\Lambda_{QCD}) \, \delta \rangle$$

WC's Jet functions Form Factors Wave functions

Power Corrections !!

 m_{L}

The effective theory apporach (SCET) is as <u>rigorous</u> as the standard effective hamiltonian approach

• The Λ_{OCD}/m_b expansion is <u>necessary</u> in order to be able to write the effective theory at all

• For some decays the matrix elements $\langle X | \overline{O}(\Lambda_{OCD}) | B \rangle$ are expressed in terms of light-cone wave functions and/or obey symmetry relations

Basic kinematics

Energetic light particles in B decays move close to the light cone:

- the pion in $B \rightarrow D\pi$
- the mesons in $B \rightarrow (K^{(*)}, \rho) \gamma$
- the X_s system close to the photon energy endpoint in $B \rightarrow X_s \gamma$
- the spectator quark struck by the photon in $B \rightarrow \gamma e \bar{\nu}$

We use light-cone coordinates: n=(1,0,0,1), $\bar{n}=(1,0,0,-1)$

$$p^{\mu} = \bar{n} \cdot p \frac{n^{\mu}}{2} + n \cdot p \frac{\bar{n}^{\mu}}{2} + p_{\perp}^{\mu} \equiv p^{-} \frac{n^{\mu}}{2} + p^{+} \frac{\bar{n}^{\mu}}{2} + p_{\perp}^{\mu} = (p^{-}, p^{+}, p_{\perp})$$

$$p^{2} = p^{-} p^{+} - p_{\perp}^{2}$$

$$p = Q(1, \lambda^{2}, \lambda) \text{ with } Q \sim O(m_{b}) \text{ and } \lambda \ll 1$$
soft quarks struck by photons: $p = (Q, \Lambda_{QCD}, \sqrt{\Lambda_{QCD}Q}) \Rightarrow \lambda = \sqrt{\frac{\Lambda_{QCD}}{m_{b}}}$
quarks inside light mesons: $p = (Q, \frac{\Lambda_{QCD}^{2}}{Q}, \Lambda_{QCD}) \Rightarrow \lambda = \frac{\Lambda_{QCD}}{m_{b}}$

The modes

Coleman-Norton theorem: singularities correspond to propagation of modes on mass-shell

Independent fields describe soft and collinear fluctuations of quarks and gluons

hard
$$p_h = (Q, Q, Q)$$
 $p_h^2 = Q^2$ } perturbative
 hard-collinear (Ξ, A_{hc}) $p_{hc} = (Q, \Lambda, \sqrt{\Lambda Q})$ $p_{hc}^2 = \Lambda Q$
 soft (q_s, A_s) $p_s = (\Lambda, \Lambda, \Lambda)$ $p_s^2 = \Lambda^2$ non-perturbative
 collinear (ξ, A_c) $p_c = (Q, \Lambda^2/Q, \Lambda)$ $p_c^2 = \Lambda^2$ } $(Q \sim m_h, \Lambda = \Lambda_{QCD})$

*hard-collinear modes can and, therefore, have to be integrated out

this cannot be done exactly and one needs to use perturbation theory: they produce the so-called jet-functions

★ in inclusive processes they are present as external states (e.g. $B \rightarrow X_s \gamma$) but, using dispersion relations, they appear again as internal lines.

Decoupling of soft gluons

* Coupling of soft gluons to collinear quarks and gluons vanish in the light cone gauge

t is possible to remove them from the leading order lagrangian by field redefinitions:

$$\begin{aligned} \xi_{n,p} &\to Y[n \cdot A_s] \, \xi_{n,p}^{(0)} \\ A_{n,q} &\to Y[n \cdot A_s] \, A_{n,q}^{(0)} \, Y^+[n \cdot A_s] \end{aligned} \qquad \text{with} \quad Y[n \cdot A_s] = P \exp\left[i \, g \int_{-\infty}^x d \, \lambda \, n \cdot A_s(\lambda \, n_\mu)\right] \end{aligned}$$

All ultrasoft effects are moved into external operators:

$$L_{c}^{0}[\xi_{n,p}, A_{n,a}, A_{s}] = L_{c}^{0}[\xi_{n,p}^{(0)}, A_{n,a}^{(0)}, 0]$$

Processes without mesons in the final state

* Since there are no mesons in the final state, we need only SCETI

★ Up to power corrections we have:

$$\begin{split} A(B \to f) &= C_{_W} \left\langle f \left| O_{_{OCD}} \right| B \right\rangle \to C_{_W} C_{_b} \left\langle f \left| O_{_{SCET}} \right| B \right\rangle = C_{_W} C_{_b} \left\langle f \left| O_{_{SCET}} \right| B \right\rangle \\ & \blacklozenge \end{split} \\ \begin{aligned} \text{decoupling of soft gluons} \end{split}$$

 $C_{_W}$ and $C_{_b}$ are Wilson coefficients that encode contributions from the scales $m_{_W}^2$ and $m_{_h}^2$

★ If the SCET₁ operator, after the decoupling of soft gluons, factorises:

 $A(B \to f) \to C_W C_b \langle f | O_C^{(0)} O_S^{(0)} | B \rangle = C_W C_b \langle f | O_C^{(0)} | 0 \rangle \langle 0 | O_S^{(0)} | B \rangle$ $= C_W C_b J_C * \phi_B + O(\Lambda_{QCD}/m_b)$

where J_{c} and ϕ_{B} encode contributions from the scales $\Lambda_{_{QCD}}m_{_{b}}$ and $\Lambda_{_{OCD}}^{^{2}}$

Processes with mesons in the final state

- ★ Matching between SCET_I and SCET_{II}: $O_{SCET_I} \rightarrow O_{SCET_{II}}$
- ★ Off-shell external states and dimensional regularization <u>do not</u> regularize all the IR divergences. This results in the <u>appearence of end-point singularities</u> in the convolution of hard scattering kernels and light cone wave functions.
 - soft-collinear (messanger) mode [Becher, Hill, Neubert]
 - analytic IR regulator [Beneke, Feldmann]
 - IR regulator at the lagrangian level [Bauer, Dorsten, Salem]
- Matching of the SM onto SCET₁
- Naive matching of SCET_I onto SCET_{II}
- If, for a given operator, end-point singularities appear, the second step of the matching is affected by the details of the IR regulators and the operator leads to a non-factorizable contribution (e.g. soft form factor)
- Predictivity is preserved if one can show that the matrix elements of the nonfactorizable SCET_I operator obey symmetry relations.
- ★ Care is required if on-shell charm quarks appear! (e.g. charming penguins)

$$\langle M | O_{SCET_{n}}^{(0)} | B \rangle = \langle M | O_{C}^{(0)} O_{S}^{(0)} | B \rangle = \langle M | O_{C}^{(0)} | 0 \rangle \langle 0 | O_{S}^{(0)} | B \rangle$$

Need not to be Light-Cone Wave Functions!

Let us assume that $O_C^{(0)}$ contains only 2 collinear quarks

- ★ Write down the most general operators involving 2 collinear quarks at leading and subleading order in $\Lambda_{_{QCD}}/m_{_b}$
- ★ Their matrix element between the vacuum and a pseudo-scalar or vector meson are given in terms of Light-Cone Wave Functions of twist-2 and twist-3.
- Whenever twist-3 wave functions are present, it essential to include contributions from higher fock states:
 - numerical impact ~ 10% 20%
 - important for exact cancellations (Ward identity checks, etc.)

$$B \to \gamma \, e \, \overline{\nu}$$

• The simpler decay $B \rightarrow e \overline{v}$ is chiral suppressed

- This chiral suppression can be avoided allowing for a final state photon
- The effective Hamiltonian arises at tree level in the SM:

 $H_{\rm eff} = 4 G_F / \sqrt{2} V_{ub} (\overline{u}_L \gamma^{\mu} b_L) (\overline{e}_L \gamma_{\mu} \nu_L)$

 \star Sensitive to V_{ub}

Not expected to receive large New Physics contributions (e.g. from SUSY)
 Gives valuable pieces of information on the B meson wave function

Factorisation in $B \rightarrow \gamma e \nu$: results

Analysis at all orders in α_s and at leading order in Λ_{QCD}/E_{γ} $\Lambda_{QCD} \ll E_{\gamma}^c < E_{\gamma} < \frac{m_B}{2}$

■Equality of the form factors: $f_V(E_\gamma) = f_A(E_\gamma)$

Factorization: form factors as a 1-dimensional convolution of perturbative hard scattering kernels and the B meson light cone wave function:

$$f(E_{\gamma}) = \int d\xi T(E_{\gamma},\xi) \phi_{B}(\xi) = C(E_{\gamma}) \int d\xi J(E_{\gamma},\xi) \phi_{B}(\xi)$$

[Descotes-Genon, Sachrajda: proof at the 1-loop level] [Lunghi, Pirjol, Wyler; Bosch, Hill, Lange, Neubert: all order proof]

Relevance for QCD

*Use other V_{ub} determinations to extract informations on the B meson wave function

★The tree-level amplitude is proportional to $\lambda_b^{-1} = \int \phi_B(\xi)/\xi$ The same parameter enter many other B decays: $B \rightarrow (K^* e \nu, \rho e \nu, K^* \gamma, \rho \gamma, \pi \pi, KK, K \pi, ...)$

★At 1-loop order the convolution integral involve other logarithmic moments of the B meson wave function: the size of the effect depends on the shape of the wave function itself

The decays $B \rightarrow \gamma \gamma$ and $B \rightarrow \gamma e e$ depend on exactly the same convolution integral at all order in perturbation theory

The ratios $\Gamma(B \to \gamma \gamma)/\Gamma(B \to \gamma e \nu)$ and $\Gamma(B \to \gamma e e)/\Gamma(B \to \gamma e \nu)$ are free of hadronic uncertainties up to $\Lambda_{_{OCD}}/E_{\gamma}$ corrections

$$B \to \gamma \gamma \& B \to \gamma e e$$

FCNC processes: the effective Hamiltonian arises at the loop level in the SM:

$$\begin{split} H_{\text{eff}} &= \frac{4 \, G_F}{\sqrt{2}} \left(V_{tb} V_{td}^* \sum_{i=1}^{10} C_i O_i + V_{ub} V_{ud}^* \sum_{i=1}^{2} C_i O_i^u \right) \\ O_2 &= \overline{d}_L \gamma^\mu c_L \, \overline{c}_L \gamma_\mu b_L \qquad \qquad O_9 = \overline{d}_L \gamma^\mu b_L \, \overline{e} \, \gamma_\mu e \\ O_7 &= \frac{e}{16 \, \pi^2} \, m_b \, \overline{d}_L \sigma^{\mu\nu} b_R \, F_{\mu\nu} \qquad \qquad O_{10} = \overline{d}_L \gamma^\mu b_L \, \overline{e} \, \gamma_\mu \gamma_5 e \\ O_8 &= \frac{g_s}{16 \, \pi^2} \, m_b \, \overline{d}_L \sigma^{\mu\nu} b_r \, G_{\mu\nu}^a \end{split}$$

***** Same effective Hamiltonian as for $b \rightarrow d \gamma$ and $b \rightarrow d e e$

* Strong sensitivity to new physics

★ Traditional approach: only O₇

$$\langle \gamma \gamma | O_{\gamma} | B \rangle \propto \langle \gamma | \overline{d} \sigma^{\mu \nu} b | B \rangle \rightarrow g_{+}(E_{\gamma}), g_{-}(E_{\gamma}), g_{0}(E_{\gamma})$$

★Both photons are energetic and we can apply the effective theory approach

the matrix elements of O₂ and O₈ are proportional to the O₇ one up to power corrections:
 [Descotes-Genon, Sachrajda: proof at order α_s]

$$\langle \gamma \gamma | O_{2,8} | B \rangle = (**) \langle \gamma \gamma | O_7 | B \rangle + O(\frac{\Lambda_{QCD}}{m_h})$$

 m_h^2 fluctuations (perturbative)

Factorization of the form factors

[Lunghi, Pirjol, Wyler; Descotes-Genon, Sachrajda]

$$g_{A}(E_{\gamma}) = \int d\xi T_{A}(E_{\gamma},\xi) \phi_{B}(\xi) = C_{A}(E_{\gamma}) \underbrace{\int d\xi J(E_{\gamma},\xi) \phi_{B}(\xi)}_{\text{same convolution as in } b \to \gamma e \nu}$$

• Explicit form of the symmetry breaking corrections at order α_s

$$\frac{g_{+}(E_{\gamma})}{f_{V}(E_{\gamma})} = \frac{1}{2} \frac{Q_{d}}{Q_{u}} \left(1 - \frac{\alpha_{s}C_{F}}{4\pi} \frac{E_{\gamma}}{E_{\gamma} - m_{b}/2} \log \frac{2E_{\gamma}}{m_{b}} \right) + o(\alpha_{s}^{2})$$
$$g_{-}(E_{\gamma}) = -g_{+}(E_{\gamma}) + o(\alpha_{s}^{2})$$
$$g_{0}(E_{\gamma}) = 0 + o(\alpha_{s}^{2})$$

 $B \rightarrow \gamma e e$

★ New feature: leading order long distance $c \overline{c}$ rescattering $(J/\psi, \psi', ...)$ Cuts in the dilepton mass spectrum (same as in $b \rightarrow s e e$)

Iow-s region: the photon energy is large and the SCET approach is feasible

high-s region: the photon is soft and other methods have to be used [heavy quark symmetry, ...]

$$A(B \to \gamma e e) = \frac{G_F}{\sqrt{2}} \frac{\alpha_e}{\pi} V_{tb} V_{td}^* \left[(C_9^{\text{eff}} \bar{e} \gamma^{\mu} e + C_{10} \bar{e} \gamma^{\mu} \gamma_5 e) \underbrace{\langle \gamma | \bar{d}_L \gamma_{\mu} b_L | B \rangle}_{\langle \gamma | \bar{d}_L \gamma_{\mu} b_L | B \rangle} -2 C_7^{\text{eff}} \frac{m_b}{q^2} q^{\nu} \underbrace{\langle \gamma | \bar{d}_L \sigma_{\mu\nu} b_L | B \rangle}_{g_+, g_-, g_0} \bar{e} \gamma^{\mu} e \right]$$

• The ratios $\gamma ee/\gamma ev$ and $\gamma ee/\gamma \gamma$ are free of hadronic uncertainties up to power corrections

Conclusions and outlook

* New approach to the analysis of infrared divergences in QCD

- * It allows to beyond the BBNS approach:
 - color suppressed decays
 - somewhat different factorization formulae
- * Many proofs of factorization are already complete $(B \rightarrow D\pi, B \rightarrow \gamma e \nu, B \rightarrow X_s \gamma, B \rightarrow \pi \pi, B \rightarrow K \pi ...)$

* Phenomenological analysis has been worked out for $B \rightarrow \gamma$ transitions

★ Will have strong impact on jet physics