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Outline
• Motivations
• Historical overview
• Recent and present measurements
• Possible future extensions
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why hadron production
• Neutrino sources from hadron interactions

– From accelerators
– From cosmic rays

• Energy, composition, geometry of the beam is 
determined by the development of the hadron 
interaction and cascade.
– And by target/collection optics, but this we can know 

easily
• In neutrino oscillation experiments the beam is (part 

of) the experiment no credible result without a 
reliable understanding of the beam itself.

• Design parameters of future neutrino beams 
influenced by target/energy choices



One example: MINOS



Atmospheric neutrino fluxes

• Primary flux is now 
considered to be known to 
better than 10%

• Most of the uncertainty 
comes from the lack of data 
to construct and calibrate a 
reliable hadron interaction 
model.

• Model-dependent 
extrapolations from the 
limited set of data leads to 
about 30% uncertainty in 
atmospheric fluxes

• cryogenic targets
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G.Battistoni, Now2000

Discrepancies between hadronic generators



Example of future projects
Primary energy, target material and geometry, collection scheme
• maximizing the π+, π− production rate /proton /GeV
• knowing with high precision (<5%) the PT distribution
CERN scenario: 2.2 GeV/c proton linac.

Phase rotation
• longitudinally freeze
the beam: slow down 
earlier particles, 
accelerate later ones
• need good knowledge 
also of PL distribution



Historical overview
• Mostly based on measurement of particle 

yields along beam lines
• Experiments done making (smart) use of 

existing facilities
– No experiments built on-purpose

• Low (~20GeV/c) and high (~400GeV/c)  
primary proton momenta, forward angular 
region (<150mrad)

• Low statistics and/or limited number of data 
points



Low-energy
• J. Allaby et al., CERN-70-12

– p-nuclei (B4C, Be, Al, Cu, Pb) and p-p  collisions 
at 19.2 GeV/c 

– Single arm spectrometer 
• G. Eichten et al., Nucl. Phys. B44(1972) 333

– p, K production in p-nuclei collisions (Be, B4C,Al, 
Cu, Pb targets) at 24 GeV/c 

– single arm magnetic CERN-Rome spectrometer
• All datasets useful, but suffer from low 

statistics and high systematics (15 % on cross 
sections)
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• Motivations and scope

• Experiment’s uncertainties



NA20 (Atherton et al.) @ CERN-SPS

• Secondary energy 
scan: 60,120,200,300 
GeV

• H2 beam 
line in the 
SPS north-
area



• Overall quoted errors 

•Absolute rates: ~15%

•Ratios: ~5%

• These figures are typical of this kind of 
detector setup



SPS: NA56/SPY
• Most likely the most advanced study done 

with instrumented beam line experiments
• Dedicated to WANF (CHORUS/NOMAD) 

(and CNGS) experiments
• To address discrepancies beam spectrum, 

shape and composition as measured in 
CHORUS/NOMAD compared to MC 
predictions.

• 450GeV/c incident protons, 7 135 GeV/c 
secondaries (overlap with Atherton)

• Exploits TOF / Cherenkov / Calorimetry



SPY target region

0, ±15mrad, ± 30mrad



SPY spectrometer



SPY measurement principle

• TOF + Cherenkov, cross-check with calorimetry.



Present 
• Aim at event-by-event experiments, not particle-by-

particle
• Modern design

– Open-geometry spectrometers
– Full solid angle and P.Id.
– Design inherited from Heavy Ions experiments 

(multiplicity, correlations, pion interferometry, …)
• Full momentum acceptance, scan on incident proton 

momenta (not only on momentum of secondaries)
• High event rate 

– Heavy ions experiments are designed for very high track 
density per event, not for high rate of relatively simple 
events



E910
• BNL E910

– main goal: Strangeness 
production in p-A collision 
(comparison with A-A 
collisions)

– Some data overlap with our 
needs

– 6,12,18 GeV/c beam proton 
momenta

– Be, Cu, Au targets
• however

– low statistics in general 
(this is common in heavy-
ions experiments), very low 
at 6GeV/c

– no thick targets
– no backward acceptance 

(target outside the TPC)



HARP
• Inaugurates a new era in Hadron Production 

for Neutrino Physics:
• Based on a design born for Heavy Ions 

physics studies
– Full acceptance with P.Id.
– High event rate capability (3KHz on TPC)

• Built on purpose
• Collaboration includes members of Neutrino 

Oscillation experiments 
– And makes measurements on specific targets of 

existing neutrino beams.



HARP motivations
• Input to neutrino factory designs

– Low-energy beam
– Many target samples (material and length)

• Atmospheric neutrinos
– Cryogenic targets

• Measurement of experimental targets
– Collaboration with K2K and MiniBooNE

• Calibration of hadron production MC 
generators
– Explicit collaboration with Geant-4



HARP’s goals
• secondary hadron yields

– for different beam momenta
– as a function of momentum and angle of daughter particles
– for different daughter particles

• as close as possible to full acceptance
• the aim is to provide measurements with about 2% overall precision 
• efficiencies must be kept under control, down to the level of 1%

– primarily trough the use of redundancy from one detector to another
• thin, thick and cryogenic targets
• T9 secondary beam line on the CERN PS allows a 2 15 GeV energy 

range
• O(106) events per setting

• a setting is defined by a combination of target type and material, beam 
energy and polarity

– Fast readout 
• aim at ˜103 events/PS spill, one spill=400ms. Event rate ˜ 2.5KHz
• corresponds to some 106 events/day
• very demanding (unprecedented!) for the TPC.



Experimental area & detector layout

target, Inner Trigger Cylinder, TPC and RPC
in a solenoid magnet

Forward 
Trigger
Plane

Drift chamber
stations

cerenkov

Time Of Flight

electron
identifier

muon
identifier

dipole magnet



Acceptances

TPC Forward
spectrometer



Acceptances

• Acceptance: 
PT vs. PL box 
plot for pions 
produced in 
15GeV/c 
interactions 
of protons on 
thin Be target

• redundancy 
in overlap 
regions



Data taking
• Programme completed successfully
• Despite the non optimal beam 

conditions the DAQ system showed 
high performance

30 TB of data
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TPC
• A high-statistics calibration with cosmic rays and 
radioactive sources (Fe55 and Kr) has been made in 
2003. 

•Using these data it has been possible to

•Make a first evaluation and correction of the X-
talk

•Compute the gain curves and map the dead 
regions 

•Get a 30% improvement of the momentum 
resolution

•Make a first trial of a dE/dx measurement

•As a first check of the improvements, data taken with a 
cryogenic H2 target and 3GeV/c pions and protons is 
being analyzed, looking for the elastic scattering:

p,(π) p  ->  p,(π)  p



Momentum reconstruction
dataMonte Carlo
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Matching to forward PID 
detectors

NDC-TOF Wall

NDC-Electron id

ecal energy (a.u.)
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TOF 7σ separation at 3GeV
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Prospects on physics analysis

• Forward and beam detectors are 
already functional for analysis:
– Calibrated and aligned
– High P.Id. performance 
– Efficient track reconstruction
– Monte Carlo available

• We have selected strong physics 
cases within our reach and of  our 
immediate interest

• The forward analysis is of 
immediate interest to the K2K 
and MiniBooNE experiments
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• P>1 GeV      reach forward P.Id detectors
• P<4.5 GeV       >3σ π/p separation with 

TOF and overlap with cherenkov
� θ<300 mrads      covered by forward 

spectrometer

K2K example



Relevance of HARP for K2K neutrino beam

pions producing neutrinos pions producing neutrinos 
in the oscillation peakin the oscillation peak
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HARP/NA49 
• particle ID in the TPC is augmented by TOFs
• leading particles are identified as p or n by a calorimeter in connection 

with tracking chambers
• rate somehow limited (optimized for VERY high multiplicity events).

– order 106 event per week is achievable
• NA49 is located on the H2 fixed-target station on the CERN SPS.

– secondary beams of identified π, K, p; 40 to 350 GeV/c momentum
• Relevant for atmospheric neutrinos and NuMI beam



E907 @ FNAL
• proposed on the FNAL main injector, secondary beams of π, K, p; 5 to 120 

GeV/c
• In addition to tests of scaling lows in high-energy particle production, 

nuclear and heavy-ions physics, E907 is relevant for atmospheric 
neutrinos, NuMI beam, higher-energy proton drivers for ν-factories

• As in all modern hadron production experiments, it is an open-geometry 
spectrometer.

• TPC + spectrometer, complemented with TOFs and ring-imaging 
Čerenkov

• aiming at the same precision level as HARP: 2%
• Planning for data points with statistics of 3·106 events. One data point 

would take about 6 days. 
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Conclusions
• Hadron production for Neutrino Experiments is a 

well established field since the ’80s
• Present trends

– Full-acceptance, low systematic errors
– High statistics
– Search for smaller and smaller effects characterization 

of actual neutrino beam targets to reduce MC 
extrapolation to the minimum

– Direct interest of neutrino experiments in hadron 
production

• If the beam is (part of) the experiment, calibration of 
the beam is an unavoidable step.


