Experiments to detect θ_{13}

M.Apollonio Universita' di Trieste e INFN

Layout of the talk

- θ_{13} and motivations to its measurement
- Chooz limit
- Appearance and disappearance experiments
 - Accelerators (A)
 - Nuclear Reactors (R)
- (A)
 - Approved projects (Phase I)
 - Phase II
 - Phase III
- (R)
 - Double-Chooz and similar

θ_{13}

- Scenario: MiniBoone disfavouring LSND
- "standard picture"
 - 2 $\Delta m_{ij}^2 (\Delta m_{12}^2, \Delta m_{23}^2)$ indipendent
 - 3 mixing angles (θ_{12} , θ_{23} , θ_{13})
 - -1 P phase
- Mixing Matrix PMNS
 - 1-2 solar mixing
 - 2-3 atmospheric mixing
 - 1-3 o e3 mixing: θ_{13} describes oscillations v_e at the atmospheric frequency
 - − δ_{CP} → introduces CP violation effects

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \\ \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{pmatrix} c_{13} & 0 & e^{-i\delta_{CP}}s_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{CP}}s_{13} & 0 & c_{13} \end{pmatrix} \bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Current experimental results:

- $\Delta m_{23}^2 \sim 2 \times 10^{-3} \, eV^2$
- $\Delta m_{12}^2 \sim 7 \times 10^{-5} \text{ eV}^2$
- $\Delta m_{23}^2 >> \Delta m_{12}^2$
- θ₁₂~35°
- θ₂₃~45°

Why measuring θ_{13} ?

- The least known among the parameters in PMNS
- Coupled to $e^{i\delta}(U_{e3})$ $\theta_{13} > 0$ would allow to access δ
- CP violation in the lepton sector

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} = \begin{pmatrix} \mathbf{0.7} & \mathbf{0.7} & \mathbf{s}_{13} e^{i\delta} \\ \mathbf{0.5} & \mathbf{0.5} & \mathbf{0.7} \\ \mathbf{0.5} & \mathbf{0.5} & \mathbf{0.7} \\ \mathbf{0.5} & \mathbf{0.5} & \mathbf{0.7} \end{pmatrix}$$

What do we know about θ_{13} today? θ_{13} must be small 1. (maybe null) 2. The best limit up to date comes from the reactor experiment CHOOZ: $(1.3 \times 10^{-3} < \Delta m_{23}^2 < 3 \times 10^{-3})$

(¹ V²) (eV²) $v_{.} \rightarrow v_{.}$ 10 10 analysis A 10 analysis B analysis C 90% CL Kamiokande (multi-GeV) 🐯 90% CL Kamiokande (sub+multi-GeV) 0.9, 1 sio²(20) [CHOOZ coll., Eur.Phys.J.C27(2003),331-374] IFAE 2004, Torino

[J.Bouchez, NO-VE 2003]

3 families scenario: appearance experiments

• Accelerators $\mathbf{P}(v_{\mu} \rightarrow v_{e}) =$ • **NB**: P sensitive to δ (correlated with θ_{13})

 $=\sin^2 2\theta_{13} \cdot A_1$ $+\cos\delta\cdot\sin^2\theta_{13}\cdot\alpha\cdot\cos\Delta\cdot A_3$ $+\alpha^2 \cdot A_{A}$

 $A_{1} = \sin^{2} \theta_{23} \cdot \frac{\sin^{2} \left[\left(1 - \hat{A} \right) \right]}{\left(1 - \hat{A} \right)}$ $-\sin\delta\cdot\sin^2\theta_{13}\cdot\alpha\cdot A_2 \qquad A_2 = \xi\cdot\sin(\Delta)\cdot\frac{\sin(\hat{A}\Delta)}{\hat{\lambda}}\cdot\frac{\sin(1)}{\hat{\lambda}}$ $A_3 = \xi \cdot \cos(\Delta) \cdot \frac{\sin(\hat{A}\Delta)}{\hat{A}} \cdot \frac{\sin(\hat{A}\Delta)}{\hat{A}}$

• α should be considered • sign(Δm_{13}^2) is present in \hat{A}

[P.Migliozzi, F.Terranova arXiv:hep-ph/0302274]

$$A_{4} = \cos^{2} \theta_{23} \cdot \sin^{2} 2\theta_{12} \cdot \frac{\sin^{2} \left(\frac{L}{A}\right)}{\hat{A}}$$
$$\Delta = \Delta m_{13}^{2} \left(\frac{L}{AE}\right)$$
$$\xi = c_{13} \cdot \sin 2\theta_{12} \cdot \sin 2\theta_{23}$$
$$\alpha = \frac{\Delta m_{21}^{2}}{2}$$

15/04/2004

IFAE 2004, Torino

- general concept: conventional beam
 - Broad band (BBB)
 - Narrow band (NBB)
- Super Beam (SB)
- Off-Axis Beam (OA)
- β-Beam (βB)
- Neutrino Factory (NF)

- It is a conventional proton beam whose power is of the order of MW
- Produces v_{μ} (\overline{v}_{μ})
- Proton-driver: technically feasible
 →PB: target
 →Sol.: R&D

15/04/2004

(A)-OA

• Detector laying out of the main beam axis

- Original solution: radioactive ions with short lifetime
 - acceleration
 - storage
 - decay
- Es.: β^{-} (⁶He) $\rightarrow \overline{\nu}_{e'}$ β^{+} (¹⁸Ne) $\rightarrow \nu_{e}$

(A) Experiments [J.Bouchez, NO-VE 2003]

	Experiment	Power (MW)	E (GeV)	L (km)	detector	$\frac{\text{Sens}}{\text{to }\theta_{13}}$	Starting date
Phase I	MINOS	0.4	3	730	Calorimeter	5°	2005
	OPERA	0.17	20	732	Emulsion	7º	2006
	ICARUS	0.17	20	732	L-Ar	5°	2006
Phase II	NuMI-OA	0.4	2	700/ 900	Fine grained calorimeter[20kT]	2.5°	2008 ?
	T2K (OA)	0.8	0.7	295	WC (SuperK) [20kT]	2.3º	2009
Phase III	T2K-II (OA)	4.0	0.7	295	WC (HyperK) [500kT]	1º	2020 ?
	SPL-SB	4.0	0.27	130	WC/L-Ar [500kT]	10	~2015
	β-Beam	0.2	0.3-0.6	130	WC/L-Ar [500kT]	0.5°	2018 ?

15/04/2004

(A) Experiments (cont'd)

- Requirements for Super-Beams ($v_{\mu} \rightarrow v_{e}$ appearance case)
 - Beam side:
 - Low v_e contamination
 - Good knowledge of v_e/v_μ
 - Good understanding of the beam (near to far)
 - Detector side:
 - Good e- efficiency
 - Good π^0 rejection
 - Good understanding of bkg

Which energy?

- Low or high?
 - Focalisation of neutrinos $\sim \gamma^2 \sqrt{E^2}$
 - Solid angle factor @ L ~1/ γ^2 (1/E²)
 - $-\sigma(v) \sim \gamma \sim E$

- p flux $\sim 1/\gamma \sqrt{1/E}$

- The 0th order approximation cannot help that much in the choice
- Other considerations mandatory

LOW (E<1GeV) Or High (E>1GeV) ? [choice related to bkg considered]

intrinsic v_e contamination and π^0 mimicking e-

- WC technique gives a good π⁰ (NC) vs e- separation (2ring vs 1-ring)
- Less v_e (below K threshold)
- Fermi momentum → poor E resolution
- No matter effects

- Better use fine grained detectors or L-Ar TPC
- Need good π^0 rejection
- More v_e bkg
- Better resolution in E
- Matter effects can arise → sign(△m²₁₃)

caveat: stay below τ threshold

Underground or not?

- In principle not: just a matter of choosing the right (low) duty cycle [phase II, 20 kton]
- BUT it is a must if your detector is "multi-purpose" (e.g. searching for other effects like proton decay) [phase III, 500 kton]

Near/Far

- Best way to determine v_e bkg: measure it at a near location (before oscillation)
- Try to ensure equality of conditions between near and far detectors: i.e. same beam, same target nuclei (cross sections and π^0 production do depend on nuclei)
- Near detector sufficiently far from the source → point-like assumption (~ 2 km)
 - If you go closer then the source is not point-like anymore
- Near detector able to understand the different v interactions (QE/non-QE)
- Ideally TWO near detectors (~300 m, ~2 km):
 - One giving a clear clue about \boldsymbol{v} interactions
 - The other as much as identical to the FAR detector

Near/Far (cont'd): strategies for beam understanding

• Cheap solution:

- N sees a point-like source
- F and N use the same detection technique (1/L² law)
- Good for discovery though it does not allow a precise measurement of θ_{13}

Time to have a look at some projects ...

IFAE 2004, Torino

full mixing, 5 years run @ 6.76×10^{19} pot/year

• Tuned to reach max sensitivity to v_{τ} appearance (off-peak) $\rightarrow E > E_{thre}(\tau) \sim 17 \text{ GeV} \rightarrow \Delta_{CNGS} \sim O(10^{-1}) \rightarrow \Delta^2 \sim O(10^{-2})$

 $\mathbf{P}(v_{\mu} \rightarrow v_{\tau}) \approx \cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} \cdot \Delta^2$ Suppression factor NB: •High cross sections • They open a window to θ_{13} $\sigma(v_{\tau}$ -CC), $\sigma(v_{e}$ -CC) •High granularity $\mathbf{P}(v_{\mu} \rightarrow v_{e}) \approx \sin^{2} 2\theta_{13} \cdot \sin^{2} \theta_{23} \cdot \sin^{2} \Delta$ (and detection of $\tau \rightarrow e \text{ processes}$): high BKG suppression (NC(π^0), $v_{\mu} \rightarrow v_{\tau} \rightarrow \tau (\rightarrow e)$ IFAE 2004, Torino 15/04/2004

Relative importance of the terms in *P: case* OFF-PEAK: $\Delta \neq \pi/2$

 $\begin{array}{c} A_{i} \sim O(1), \hat{A}_{CNGS} \sim 1.6 \\ |1-\hat{A}| \Delta <<1 \rightarrow \sin^{2}[(1-\hat{A})\Delta]/(1-\hat{A})^{2} \sim \Delta^{2} \end{array}$

•Effect $(\delta - \theta_{13}) \rightarrow O_3$ •Sign (Δm_{13}^2)

[P.Migliozzi, NO-VE 2003]

Icarus:Lar-TPC

- T~89K, E~.5 kV/cm
- tracking, dE/dX, e.m. + had. calorimetry
- e/γ id // e/π separation $\sigma E/E \sim 13\%/sqrt(E)$ (e.m.) $\sigma E/E \sim 30\%/sqrt(E)$ (had)
- Conceived to detect events with τ production → allows detection of e and therfore the study of channel νµ→ντ
- Being built @ LNGS
 - T600
 - 2xT1200 → T3000

Icarus: expected results for θ_{13}

C.Montanari-LNGS, 22-marzo-2004

15/04/2004

Opera: emulsions + µ-spectrometer

- Direct observation of the decay products from τ (CC)
- High granularity: ~ μm (track separation)
- $\sigma_{\rm E}/{\rm E} \sim 20\%/{\rm sqrt(E)}$ (e.m.)

• Sensitivity to θ_{13} (sign(Δm^2)& δ effects):

15/04/2004

SuperKamiokande

- Water Cerenkov
 detector
 - Sub-GeV \rightarrow good π^0 /el. separation
 - θ₁₃: 2.5° sensitivity
 after 5 yrs of data
 taking

HyperKamiokande

 Goals:

 – Improve θ₁₃ sensitivity
 – Go for CP

- Go for CP violation measurement

T2K-I vs CNGS

- Sensitivity to θ_{13} as a function of δ
- T₂K: O_2 even in Δ
- CNGS: O_3 odd in Δ

T₂K I/II vs CNGS

• Sensitivity to θ_{13} :

Minos (cont'd)

Sensitivity to θ_{13}

3 σ Contours 90% CL Exclusion ∆m² (eV²) ₃₁ ∆m² (eV²) ³¹ MINOS with: CHOOZ 25, 16, 7.4 x10²⁰ pot -2 *!*!*!*!*!*!*!*!*!*!*! 10 -2 10 CHOOZ 90% CL **ICARUS** $\Delta m^2 = 0.0025 \text{ eV}^2$ -3 10 MINOS, with -3 25, 16, 7.4 x10²⁰ pot 10 10 -2 0.05 0.1 0.15 0.2 0.25 0.3 10⁻¹ 0 $sin^{2}(2\theta_{13})$ sin²(2θ₁₃) 15/04/2004 36 IFAE 2004, Torino

MINOS 3σ discovery limits

NuMI-OA

- OA: θ~0.7°
- L~712 km, <E>~2.2 GeV \rightarrow on peak
- |A|~0.2 → matter effects NOT negligible → sensitivity to sign(∆m²₁₃)

Relative importance of terms in P: case ON-PEAK: $\Delta \sim \pi/2$

 $A_i \sim O(1), \hat{A}_{JPARC} \sim 0$

•A_i~O(1)
 •Effect (δ-θ₁₃)

(A) sensitivity to θ_{13} (90% C.L.)

 \bullet as a function of α

15/04/2004

 θ_{13} at (A)

- Measurement made difficult by matter effects and CP violation
- Sensitivity to θ_{13} strongly depends on δ
- Synergies among different experiments could help
- Ex.: sens. to θ₁₃ in T₂K + Numi-OA: start T₂K in νmode and Numi-OA in ν-mode

- If θ₁₃>7° then: indication of appearance at 90% C.L.
- Ex1: θ₁₃=10°
- CNGS: 3 yrs of data taking (T₂K-I start), ∆m²<>0
- 8 yrs CNGS d.t. + 5 yrs T2K d.t.
- Ex2: θ₁₃=5°

disappearance exp.: Reactors

- Reactors: P <u>NOT</u> sensitive to $\delta \rightarrow$ can do a pure measurement of θ_{13}
- Tipical reaction: $\overline{v}_e + p \rightarrow e^+ + n$
 - Detection: "prompt" signal from positron (1) + delayed capture of n on Gd (p) (2) [a la Chooz]

$$\mathbf{P}(v_e \to v_e) =$$

$$= 1 - \sin^2 2\theta_{13} \cdot A_1 + \alpha^2 \cdot A_2$$

$$A_1 = \sin^2 \Delta$$

$$A_2 = \cos^4 \theta_{13} \cdot \sin^2 2\theta_{12} \cdot \Delta^2$$

$$\Delta = \Delta m_{13}^2 \left(\frac{L}{4E} \right)$$

$$\alpha = \frac{\Delta m_{21}^2}{|\Delta m_{31}^2|}$$

Chooz: an example of reactor experiment

- Relied on
 - calculation of v_e flux from the two reactor cores
 - computation of the active mass of the target
 - evaluation of the absolute efficiency
 - knowledge of v_e cross section
- Systematics kept at 2.8% ← finally limited the experimental result

- The key for a successful new reactor experiment (measuring θ₁₃) is reducing the systematics (<1%) and reach enough statistics (<0.5%)
- This can be achieved by using a pair of "identical" detectors (near/far technique)
- Some ideas are being pursued:

– A case: Double Chooz

- CAVEAT-1: you never have 2 identical detectors!
 - Different bkg (and dead times)
 - S/N different
- CAVEAT-2:energy scale and relative nonlinearities to be held into account

15/04/2004

IFAE 2004, Torino

• Faster:

 Use existing facilities/places with proper "refurbishing"

- Try to get some result before or at the same time as LBL exp's (e.g. T₂K-I, Numi-OA)
- Reactors complementarity:
 - No need to go faster: try instead to perform a highly precise measurement
 - Build new brand detectors (sophisticated too: e.g. with movable baselines)
 - You pay it with a later start

from CHOOZ to dout -CHOOZ

- Detector Basics: 2 identical detectors (12.6 m³) at
 - 150 m
 - 1050 m
- 1. Gd (0.1%) loaded LS
 - ~ 10 ton
- 2. LS buffer
- 3. Non-scintillating buffer

From CHOOZ to Double-CHOOZ

systematics	CHOOZ	D-CHOOZ	Relative error:		
Reactor flux	1.9%	-	o _{rel} ∼0.0%		
Reactor power	0.7%	-			
E/fission	0.6%	-			
systematics	CHOOZ	D-CHOOZ			
LS density	0.3%	-			
%H	1.2%	-	<u>↓</u>		
N _p target	0.8%	0.2%	→ σ _{sist} ~1%		
ε(Ee+)	1.5%	0.5%	Using the same		
Target volume	0.3%	0.2%	LS/LS+Gd should help		
15/04/2004 15/04/2004			a roz to hiprote those		

[F.Dalnoki-Veress, La thuile 2004/H.De Kerret, NO-VE 2003]

from CHOOZ to double-CHOOZ

- Important: reduce the muon flux

 main cause of correlated background!
- Also present the accidental background from natural radioactivity → LS buffer + veto
- BKG can be measured when (if) reactor is OFF

CHOOZ: rate_n vs thermal power

•NB: when GW→0 you get the bkg (accid.+correlated)

15/04/2004

D-CHOOZ

- S/B>100 (in Chooz ~ 18)
- Increase S by a factor 2.2 (from 5 to 11 tons)
- Reduce B by a factor 3 with a careful design of the detector (double buffer)

schedule

2006: FAR detector2007: NEAR detector2008 first results

Sensitivity to θ_{13} (R): D-CHOOZ

53

Other reactor experiments:

Site	Near/Far (tons)	Expected starting date	Sensitivity to θ_{13}
Angra dos reis	25t/50t	?	<0.02-0.03
Diablo canyon	25t/50t	2009	<0.01-0.02
Braidwood	25t/50t	2009	<0.02-0.03
Daya Bay	50t	2009	0.012
Kashiwazaki	8.5t/8.5t	2008	0.026
Krasnoyarsk	46t/46t	?	0.016

15/04/2004

- I have considered two categories of experiments investigating about θ_{13}
 - Accelerator based
 - Reactor Based
- (A) many possible phases and time scales $(2006 \rightarrow 2020)$
 - In general sensitivity to θ_{13} spoiled by our ignorance of δ CP term (and sign(Δ))
 - Synergies between different experiments to reduce this effect
 - Reachable sensitivities
 - Phase I (2005-2006): ~ 5°
 - Phase II (2008-2009): ~ 2.5°
 - Phase III (2015-2020): ~ 0.5°-1°
- (R) several projects as well and time-scales (though less spread)
 - Here δ CP term not involved: pure measurement of θ_{13}
 - But the hard thing is reducing detector systematics: if this is done at the $<\!1\%$ then
 - Reachable sensitivies:
 - In the range [3°-5°]
- Ex.: CNGS starting in 2006+5 yrs of data taking $\rightarrow \theta_{13} < 5^{\circ}$ in 2011 D-CHOOZ starting in 2006+3 yrs of d.t. $\rightarrow \theta_{13} < 5^{\circ}$ in 2009/2010

IFAE 2004, Torino