Experiments to detect θ_{13}

M.Apollonio Universita' di Trieste e INFN

Layout of the talk

- θ_{13} and motivations to its measurement
- Chooz limit
- Appearance and disappearance experiments
 - Accelerators (A)
 - Nuclear Reactors (R)
- (A)
 - Approved projects (Phase I)
 - Phase II
 - Phase III
- (R)
 - Double-Chooz and similar

θ_{13}

- Scenario: MiniBoone disfavouring LSND
- "standard picture"
 - $2 \Delta m_{ij}^2 (\Delta m_{12}^2, \Delta m_{23}^2)$ indipendent
 - $\frac{1}{\theta_{23}}$ mixing angles (θ_{12} , θ_{23} , θ_{13})
 - 1.2P phase
- Mixing Matrix PMNS
 - 1-2 solar mixing
 - 2-3 atmospheric mixing

 - $δ_{CP}$ → introduces CP violation effects

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} =$$

Current experimental results:

- $\Delta m^2_{23} \sim 2x10^{-3} \text{ eV}^2$
- $\Delta m_{12}^2 \sim 7x10^{-5} \text{ eV}^2$
- $\Delta m^2_{23} >> \Delta m^2_{12}$
- θ₁₂~35°
- θ₂₃~45°

Why measuring θ_{13} ?

- The least known among the parameters in PMNS
- Coupled to $e^{i\delta}(U_{e3})$ $\theta_{13}>0$ would allow to access δ
- CP violation in the lepton sector

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} = \begin{pmatrix} \mathbf{0.7} & \mathbf{0.7} & \mathbf{s}_{13} e^{i\delta} \\ \mathbf{0.5} & \mathbf{0.5} & \mathbf{0.7} \\ \mathbf{0.5} & \mathbf{0.5} & \mathbf{0.7} \end{pmatrix}$$

What do we know about θ_{13} today?

- 1. θ_{13} must be small (maybe null)
- 2. The best limit up to date comes from the reactor experiment CHOOZ:

 $\theta_{13} < 10^{6} - 17^{6}$ (1.3x10⁻³< Δm_{23}^{2} <3x10⁻³)

[J.Bouchez, NO-VE 2003]

[CHOOZ coll., Eur.Phys.J.C27(2003),331-374]

3 families scenario: appearance experiments

- Accelerators $P(\nu_{\mu} \rightarrow \nu_{e}) =$
- **NB**: P sensitive to δ (correlated with θ_{13})

$$\mathbf{P}(\nu_{\mu} \to \nu_{e}) =$$

$$= \sin^{2} 2\theta_{13} \cdot A_{1}$$

$$- \sin \delta \cdot \sin 2\theta_{13} \cdot \alpha \cdot A_{2}$$

$$+ \cos \delta \cdot \sin 2\theta_{13} \cdot \alpha \cdot \cos \Delta \cdot A_{3}$$

$$+ \alpha^{2} \cdot A_{4}$$

$$\mathbf{P}(\nu_{\mu} \to \nu_{e}) = A_{1} = \sin^{2}\theta_{23} \cdot \frac{\sin^{2}\left[\left(1 - \hat{A}\right)\Delta\right]}{\left(1 - \hat{A}\right)}$$

$$= \sin^{2}2\theta_{13} \cdot A_{1}$$

$$- \sin\delta \cdot \sin2\theta_{13} \cdot \alpha \cdot A_{2}$$

$$+ \cos\delta \cdot \sin2\theta_{13} \cdot \alpha \cdot \cos\Delta \cdot A_{3}$$

$$+ \alpha^{2} \cdot A_{4}$$

$$A_{1} = \sin^{2}\theta_{23} \cdot \frac{\sin^{2}\left[\left(1 - \hat{A}\right)\Delta\right]}{\left(1 - \hat{A}\right)}$$

$$A_{2} = \xi \cdot \sin(\Delta) \cdot \frac{\sin(\hat{A}\Delta)}{\hat{A}} \cdot \frac{\sin(1 - \hat{A}\Delta)}{\left(1 - \hat{A}\right)}$$

$$A_{3} = \xi \cdot \cos(\Delta) \cdot \frac{\sin(\hat{A}\Delta)}{\hat{A}} \cdot \frac{\sin(1 - \hat{A}\Delta)}{\left(1 - \hat{A}\right)}$$

- α should be considered
- sign(∆m²₁₃) is present in Â

$$A_{4} = \cos^{2}\theta_{23} \cdot \sin^{2}2\theta_{12} \cdot \frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}}$$

$$\Delta = \Delta m_{13}^{2} \left(\frac{L}{4E}\right)$$

$$\xi = c_{13} \cdot \sin 2\theta_{12} \cdot \sin 2\theta_{23}$$

$$\alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}$$

[P.Migliozzi, F.Terranova arXiv:hep-ph/0302274]

Accelerators

- general concept: conventional beam
 - Broad band (BBB)
 - Narrow band (NBB)
- Super Beam (SB)
- Off-Axis Beam (OA)
- β-Beam (βB)
- Neutrino Factory (NF)

(A) General concept

Main backgrounds

- Initial v_e contamination in the beam
- π⁰ production (NC)
- →Near/Far detection

(A)-SB

- It is a conventional proton beam whose power is of the order of MW
- Produces v_{μ} (\overline{v}_{μ})
- Proton-driver: technically feasible

→PB: target

→Sol.: R&D

15/04/2004

IFAE:

(A)-OA

Detector laying out of the main beam axis

15/04/2004 IFAE 2004, Torino 10

(A)β-Beams

[P.Zucchelli, Phys.Lett. B532:166,2002]

- Original solution: radioactive ions with short lifetime
 - acceleration
 - storage
 - decay
- Es.: β^- (⁶He) $\rightarrow \overline{\nu}_e$, β^+ (¹⁸Ne) $\rightarrow \nu_e$

(A)-NF

12

(A) Experiments [J.Bouchez, NO-VE 2003]

Experiment	Power (MW)	E (GeV)	L (km)	detector	Sens to θ_{13}	Starting date
MINOS	0.4	3	730	Calorimeter	5°	2005
OPERA	0.17	20	732	Emulsion	7 º	2006
ICARUS	0.17	20	732	L-Ar	5°	2006
NuMI-OA	0.4	2	700/ 900	Fine grained calorimeter[20kT]	2.5°	2008 ?
T2K (OA)	0.8	0.7	295	WC (SuperK) [20kT]	2.3°	2009
T ₂ K-II (OA)	4.0	0.7	295	WC (HyperK) [500kT]	1º	2020 ?
SPL-SB	4.0	0.27	130	WC/L-Ar [500kT]	1º	~2015
β-Beam	0.2	0.3-0.6	130	WC/L-Ar [500kT]	0.5°	2018 ?

15/04/2004

Phase I

Phase II

Phase III

IFAE 2004, Torino

(A) Experiments (cont'd)

- Requirements for Super-Beams (ν_μ→ν_e appearance case)
 - Beam side:
 - Low ν_e contamination
 - \bullet Good knowledge of v_e/v_μ
 - Good understanding of the beam (near to far)
 - Detector side:
 - Good e- efficiency
 - Good π^0 rejection
 - Good understanding of bkg

Which energy?

- Low or high?
 - Focalisation of neutrinos $\sim \gamma^2 \sim (E^2)$
 - Solid angle factor @ L $\sim 1/\gamma^2 \sqrt{1/E^2}$
 - $\sigma(v) \sim \gamma \sim E$
 - p flux $\sim 1/\gamma \sim 1/E$
- The 0th order approximation cannot help that much in the choice
- Other considerations mandatory

Low (E<1GeV) or High (E>1GeV)? [choice related to bkg considered]

intrinsic v_e contamination and π^0 mimicking e-

- WC technique gives a good π^0 (NC) vs e- separation (2-ring vs 1-ring)
- Less v_e (below K threshold)
- Fermi momentum → poor E resolution
- No matter effects

- Better use fine grained detectors or L-Ar TPC
- Need good π^0 rejection
- More ν_e bkg
- Better resolution in E
- Matter effects can arise → sign(∆m²₁₃)

caveat: stay below τ threshold

Underground or not?

- In principle not: just a matter of choosing the right (low) duty cycle [phase II, 20 kton]
- BUT it is a must if your detector is "multi-purpose" (e.g. searching for other effects like proton decay) [phase III, 500 kton]

Near/Far

- Best way to determine v_e bkg: measure it at a near location (before oscillation)
- Try to ensure equality of conditions between near and far detectors: i.e. same beam, same target nuclei (cross sections and π^0 production do depend on nuclei)
- Near detector sufficiently far from the source → point-like assumption (~ 2 km)
 - If you go closer then the source is not point-like anymore
- Near detector able to understand the different v interactions (QE/non-QE)
- Ideally TWO near detectors (~300 m, ~2 km):
 - One giving a clear clue about v interactions
 - The other as much as identical to the FAR detector

Near/Far (cont'd): strategies for beam understanding

- Cheap solution:
 - N sees a point-like source
 - F and N use the same detection technique (1/L² law)
 - Good for discovery though it does not allow a precise measurement of θ_{13}

- "Pricey" solution:
 - $VN \leftarrow \rightarrow N1$: similar detection techniques allowing beam understanding
 - N1 $\leftarrow \rightarrow$ N2: different in $\sigma(v)$ and detector performances \rightarrow can be compared
 - F and N2 using the same detection technique
 - Should be optimal for high statistics phase III where you want to reduce systematics (less dramatic for phase II)

Time to have a look at some projects ...

CNGS

full mixing, 5 years run @ 6.76×10^{19} pot/year

• Tuned to reach max sensitivity to v_{τ} appearance (off-peak) \rightarrow E > E_{thre} $(\tau) \sim 17$ GeV \rightarrow $\Delta_{CNGS} \sim O(10^{-1}) \rightarrow$ $\Delta^2 \sim O(10^{-2})$

$$\mathbf{P}(\nu_{\mu} \to \nu_{\tau}) \approx \cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} \triangle^2$$
 — Suppression factor

They open a window to θ₁₃

$$\mathbf{P}(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \cdot \sin^{2} \theta_{23} \cdot \sin^{2} \Delta$$

NB:

- •High cross sections $\sigma(v_{\tau}\text{-CC})$, $\sigma(v_{e}\text{-CC})$
- •High granularity (and detection of $\tau \rightarrow e$ processes): high BKG suppression (NC(π^0), $v_{\mu} \rightarrow v_{\tau} \rightarrow \tau(\rightarrow e)$)

Relative importance of the terms in P: case OFF-PEAK: $\Delta \neq \pi/2$

 $A_i \sim O(1)$, $A_{CNGS} \sim 1.6$ |1-A| $\Delta <<1 \rightarrow \sin^2[(1-A)\Delta]/(1-A)^2 \sim \Delta^2$

- •Effect $(\delta \theta_{13}) \rightarrow O_3$
- •Sign(Δ m²₁₃)

[P.Migliozzi, NO-VE 2003]

Deterioration effect from

 $\underline{\theta_{13}} \sim 3^{\circ}$

Icarus: expected results for θ_{13}

 $@ \Delta m^2_{23} = 2.5 \times 10^{-3}$

 $(\sin^2 2\theta_{13})_{CNGS,\tau} < 0.04$ or $\theta_{13} < 6^{\circ}$ $(\sin^2 2\theta_{13})_{CHOOZ} < 0.14$ or $\theta_{13} < 11^{\circ}$ $(\sin^2 2\theta_{13})_{MINOS} < 0.06$ or $\theta_{13} < 7^{\circ}$

C.Montanari-LNGS, 22-marzo-2004

Opera: emulsions + μ-spectrometer

- Direct observation of the decay products from τ (CC)
- High granularity: ~ μm (track separation)
- $\sigma_{\rm E}/E \sim 20\%/{\rm sqrt}(E)$ (e.m.)

Opera: expected results for θ_{13}

τ detection	signal (∆m² = 1.3 x 10 ⁻³ eV²)	signal (∆m² = 2.0 x 10 ⁻³ eV²)	signal (∆m² = 3.0 x 10 ⁻³ eV²)	BKGD
Final Design	4.7	11.0	24.6	1.06

15/04/2004

IFAE 2004, Torino

27

CNGS (cont'd)

• Sensitivity to θ_{13} (sign(Δm^2)& δ effects):

SuperKamiokande

- Water Cerenkov detector
 - Sub-GeV → good
 π⁰/el. separation
 - θ₁₃: 2.5° sensitivity
 after 5 yrs of data
 taking

HyperKamiokande

Goals:

- Improve θ_{13} sensitivity
- Go for CPviolationmeasurement

T2K-I vs CNGS

- Sensitivity to θ_{13} as a function of δ
- T2K: O_2 even in Δ
- CNGS: O_3 odd in Δ

T2K I/II vs CNGS

• Sensitivity to θ_{13} :

Minos (cont'd)

Sensitivity to θ_{13}

MINOS 3σ discovery limits

15/04/2004 IFAE 2004, Torino

NuMI-OA

- OA: $\theta \sim 0.7^{\circ}$
- L \sim 712 km, <E $><math>\sim$ 2.2 GeV \rightarrow on peak
- |A|~0.2 → matter effects NOT
 negligible → sensitivity to sign(∆m²13)

Relative importance of terms in P: case ON-PEAK: $\Delta \sim \pi/2$

 $A_i \sim O(1)$, $\hat{A}_{JPARC} \sim 0$

- $\bullet A_i \sim O(1)$
- •Effect $(\delta \theta_{13})$

Deterioration effect from

(A) sensitivity to θ_{13} (90% C.L.)

ullet as a function of α

15/04/2004

θ_{13} at (A)

- Measurement made difficult by matter effects and CP violation
- Sensitivity to θ_{13} strongly depends on δ
- Synergies among different experiments could help
- Ex.: sens. to θ_{13} in T_2K + Numi-OA: start T_2K in v-mode and Numi-OA in \overline{v} -mode

NUMI-OA in anti- ν mode (5y). Yield ______ JPARC-Ph1 in ν mode corrected for σ (anti-n) and π -/ π + yield

- If θ_{13} >7° then: indication of appearance at 90% C.L.
- Ex1: $\theta_{13} = 10^{\circ}$
- CNGS: 3 yrs of data taking (T_2K-I) start), $\Delta m^2 <> 0$
- 8 yrs CNGS d.t. + 5 yrs T2K d.t.
- Ex2: $\theta_{13} = 5^{\circ}$

disappearance exp.: Reactors

- Reactors: P NOT sensitive to $\delta \rightarrow$ can do a pure measurement of θ_{13}
- Tipical reaction: $\overline{v}_e + p \rightarrow e^+ + n$
 - Detection: "prompt" signal from positron (1) + delayed capture of n on Gd (p) (2) [a la Chooz]

$$\mathbf{P}(\nu_{e} \to \nu_{e}) =$$

$$= 1 - \sin^{2} 2\theta_{13} \cdot A_{1} + \alpha^{2} \cdot A_{2}$$

$$A_{1} = \sin^{2} \Delta$$

$$A_{2} = \cos^{4} \theta_{13} \cdot \sin^{2} 2\theta_{12} \cdot \Delta^{2}$$

$$\Delta = \Delta m_{13}^{2} \left(\frac{L}{4E} \right)$$

$$\alpha = \frac{\Delta m_{21}^{2}}{|\Delta m^{2}|}$$

[F.Dalnoki-Veress, La thuile 2004]

$$E_{\overline{v}} \cong E_{e^{+}} + E_{n} + (M_{n} - M_{p}) + m_{e^{+}}$$

$P(v_e \rightarrow v_e)$

 $\mathbf{P}(v_e \to v_e) =$ $= 1 - \sin^2 2\theta_{13} \cdot A_1 + \alpha^2 A_2$

 θ_{13} : amplitude

 $A_1=A_1(\Delta)$: atmospheric modulation

A2: solar modulation

km

[F.Dalnoki-Veress, La thuile 2004]

RI 400 t GW y RII 8000 t GW y

[Huber at al., hep-ph/0303232]

15/04/2004

Chooz: an example of reactor experiment

- Relied on
 - calculation of v_e flux from the two reactor cores
 - computation of the active mass of the target
 - evaluation of the absolute efficiency
 - knowledge of v_e cross section
- Systematics kept at 2.8% ← finally limited the experimental result

- The key for a successful new reactor experiment (measuring θ_{13}) is reducing the systematics (<1%) and reach enough statistics (<0.5%)
- This can be achieved by using a pair of "identical" detectors (near/far technique)
- Some ideas are being pursued:
 - A case: Double Chooz
- CAVEAT-1: you never have 2 identical detectors!
 - Different bkg (and dead times)
 - S/N different
- CAVEAT-2:energy scale and relative nonlinearities to be held into account

strategies

• Faster:

- Use existing facilities/places with proper "refurbishing"
- Try to get some result before or at the same time as LBL exp's (e.g. T2K-I, Numi-OA)
- Reactors complementarity:
 - No need to go faster: try instead to perform a highly precise measurement
 - Build new brand detectors (sophisticated too: e.g. with movable baselines)
 - You pay it with a later start

- Detector Basics: 2 identical detectors (12.6 m³) at
 - 150 m
 - 1050 m
- 1. Gd (0.1%) loaded LS
 - ~ 10 ton
- 2. LS buffer
- 3. Non-scintillating buffer
- 4. VETO

H.deKerret, NO-VE 2003

K.Anderson et al., arXiv:hep-ex/0402041 v1 26 Feb 2004

From CHOOZ to Double-CHOOZ

Mainly canceled using the near/far technique

systematics	CHOOZ	D-CHOOZ
Reactor flux	1.9%	_
Reactor power	0.7%	-
E/fission	0.6%	-

systematics	CHOOZ	D-CHOOZ
LS density	0.3%	_
%H	1.2%	-
N _p target	0.8%	0.2%
ε(Ee+)	1.5%	0.5%
Target volume	0.3%	0.2%

Relative error: $\sigma_{rel} \sim 0.6\%$

 $\sigma_{sist} \sim 1\%$

Using the same LS/LS+Gd should help a lot to improve these systematics ⁴⁹

15/04/2004

IFAE 2004, Torino

thuile 2004/H.De Kerret, NO-VE 2003] . La F.Dalnoki-Veress,

from CHOOZ to double-CHOOZ

- Important: reduce the muon flux → main cause of correlated background!
- Also present the accidental background from natural radioactivity → LS buffer + veto
- BKG can be measured when (if) reactor is OFF

CHOOZ: rate_n vs thermal power

•NB: when GW→0 you get the bkg (accid.+correlated)

D-CHOOZ

- S/B>100 (in Chooz ~ 18)
- Increase S by a factor 2.2 (from 5 to 11 tons)
- Reduce B by a factor 3 with a careful design of the detector (double buffer)

schedule

•2006: FAR detector

•2007: NEAR detector

•2008 first results

Sensitivity to θ_{13} (R): D-CHOOZ

Other reactor experiments:

Site	Near/Far (tons)	Expected starting date	Sensitivity to θ ₁₃
Angra dos reis	25t/50t	?	<0.02-0.03
Diablo canyon	25t/50t	2009	<0.01-0.02
Braidwood	25t/50t	2009	<0.02-0.03
Daya Bay	50t	2009	0.012
Kashiwazaki	8.5t/8.5t	2008	0.026
Krasnoyarsk	46t/46t	?	0.016

Summary

- I have considered two categories of experiments investigating about θ_{13}
 - Accelerator based
 - Reactor Based
- (A) many possible phases and time scales $(2006 \rightarrow 2020)$
 - In general sensitivity to θ_{13} spoiled by our ignorance of δ CP term (and sign(Δ))
 - Synergies between different experiments to reduce this effect
 - Reachable sensitivities
 - Phase I (2005-2006): ~ 5°
 - Phase II (2008-2009): ~ 2.5°
 - Phase III (2015-2020): ~ 0.5°-1°
- (R) several projects as well and time-scales (though less spread)
 - Here δ CP term not involved: pure measurement of θ_{13}
 - But the hard thing is reducing detector systematics: if this is done at the <1% then
 - Reachable sensitivies:
 - In the range [3°-5°]
- Ex.: CNGS starting in 2006+5 yrs of data taking $\rightarrow \theta_{13}$ <5° in 2011 D-CHOOZ starting in 2006+3 yrs of d.t. $\rightarrow \theta_{13}$ <5° in 2009/2010

The End