

Thermal Detectors

Time [s]

Phases of the experiment

Past, present and future:

- 1997 The first large mass array of bolometers was operated. $20 \text{ crystals} \times 340 \text{ g} = 6.8 \text{ kg}$ (Mi DBD - I experiment)
- 1998-2001 Tests on larger crystals (760 g) were successfully carried on aiming at more powerful experiments (hall C)
- 2001 The 20 crystal array is rebuilt with improved BKG features (Mi DBD II experiment)
- 2001 A new, larger mass array is in preparation. 44 crystals × 760 g 18 crystals × 340 g $\approx 40 \text{ kg}$ (CUORICINO experiment)
- 2003-... Full data taking of CUORICINO

July 2004-2009 Construction of a second generation array 1000 crystals × 760 g = 760 kg (CUORE experiment)

The Mi DBD – II: experimental set-up (a general test for the CUORICINO set-up)

Counts

Mi DBD: limits on 0nDBD

Energy

The CUORICINO set-up

CUORICINO: criostat & wiring

Cuoricino Single Module

Collected data : 1st run

- *cooling:* january 2003
- * tests and optimization: from january to april
- Aata acquisition:
 - **Offective april 19 to june 21 (72% live time)**
 - **Solution** Stop due to the interruption of the water supply
 - If from July 9 to July 21
 - ☺ stop due to a problem with the He liquefier
 - **©** from September 4 to October 30
 - stop due to undergo operations of manteinance and improvements

Cuoricino mass: 1st run

Detectors:

4x11 = 44 large size crystals (~5x5x5 cm³ av. mass = 790g) 32 working 9x2 = 18 small size crystals (~3x3x6 cm³ av. mass 330 g) 16 working

Active mass:

$$32 \times 0.790 = 25.28 \text{ kg}$$

 $12 \times 0.330 = 3.96 \text{ kg}$ $\left. \begin{array}{c} 29.24 \text{ kg} = 9.9 \text{ kg} \right.^{130} \text{Te}$

2 (¹³⁰Te-enriched) x 0.330 = 0.660 kg = 0.495 kg ¹³⁰Te 2 (¹²⁸Te-enriched) x 0.330 = 0.660 kg = 0.543 kg ¹²⁸Te

10.4 kg ¹³⁰Te

Detector performances: 1st run

32 5x5x5 crystals are read-out but:
2 have cross-talk
1 has high noise

29 really used

17 3x3x6 crystals are read-out but:

1 has no Si heater (one of the two central crystals)

1 lost the Si heater during the run

15 really used 11 natural 4 enriched

Pulse height distribution μ V/MeV

Background big and small crystals: comparison with MiDBD II

UNEN

Background 1st run: integrals

counts/keV/kg/y	1-2 MeV	2-3 MeV	3-4 MeV	4-5 MeV	2510-2580
MiDBD II	$\textbf{3.21} \pm \textbf{0.08}$	$\textbf{0.61} \pm \textbf{0.04}$	$\textbf{0.29} \pm \textbf{0.02}$	$\textbf{1.88} \pm \textbf{0.06}$	$\textbf{0.4} \pm \textbf{0.1}$
3x3x6 crystals	3.18 0.11	0.36 0.04	0.23 0.03	0.77 0.05	0.21 0.11
5x5x5 crystals	$\textbf{3.25} \pm \textbf{0.09}$	$\textbf{0.39} \pm \textbf{0.01}$	$\textbf{0.21} \pm \textbf{0.01}$	$\textbf{0.56} \pm \textbf{0.01}$	0.19 ± 0.03
MiDBD II / 3x3x6	1.01	1.69	1.26	2.44	1.9
3x3x6 / 5x5x5	0.98	0.92	1.1	1.38	1.1

- reduction in the 2-3 MeV region despite the reduced internal lead shield

- notable reduction in the alpha region and in the DBD region
- Pt190 peak present in the 3-4 MeV region

2615 keV ²⁰⁸TI

1764 keV ²¹⁴Bi

Background 1st run: gamma peaks

3 times higher in 5x5x5 than in $3x3x6 \rightarrow$ detector efficiency

V ⁴⁰K \rightarrow same intensity in 5x5x5 and in 3x3x6

332 keV ⁶⁰Co \rightarrow higher in 3x3x6 crystals

Cuoricino - run I Background 5x5x5 crystals

es_42-131.r2_8 (9.200 1.000 0.863 0.790 0.338 37816.3)

Cuoricino - run I Background 3x3x6 nat. crystals

Cuoricino - run I Background all nat. crystals

es_42-131.-2_8 (9.200 1.000 0.863 0.790 0.338 37816.3) ss_71-121.-2_X (14.000 1.000 0.945 0.330 0.338 9038.5)

CUORICINO sensitivity

Sensitivity: Lifetime corresponding to the minimum detectable number of events above background at a given C.L.

Status of Cuoricino

At the end of October Cuoricino was stopped to undergo operations of manteinance and improvements:

- 42/44 of the 5x5x5 crystals are working
- All the 3x3x6 crystals are working (one is without the heater)

It's now full data taking

The CUORE project

CUORE: Array of 1000 detectors: 25 towers - 10 modules/tower - 4 detectors/module

From Cuoricino to CUORE

CUORICINO proves:

- the feasibility of a large bolometric array with the tower-like structure
- that detector performances (signal rise and decay time, pulse height, energy resolution) are not affected by the increase in crystal size (from 340 g to 790 g)

Cuoricino can't be a direct test of Cuore feasibility for what concerns bkg but:

- The tightly closed structure of CUORE should give a strong reduction of the bkg operating with the detector in anticoincidence
- The lead shield designed for CUORE will be optimized in order to practically cancel the outside bkg
- R&D activities as respect to surface cleaning and material selection will give an additional reduction in the bkg contribution in the DBD region

CUORE sensitivity

According to a Montecarlo simulation of the CUORE detector based on the Cuoricino contamination levels we have extimated a bkg in the DBD region around 7 x 10^{-2} c/keV/kg/y (mainly due to surface contaminations)

Goal of CUORE:

- Minimal expectation (present cuoricino bkg) : b=0.01 c/keV/kg/y
- After appropriate R&D we can expect a reduction of a factor 20: b=0.001 c/keV/kg/y:
 - improvements of a factor 1.5-2 are expected by possible reduction of the copper mounting structure dimentions
 - primary milestone of CUORE R&D is a reduction by a factor 10 of the surface contaminations

Sensitivity:

Minimal expectation :

b = 0.01 and
$$\Gamma$$
 = 10 keV

$$F^{0V} = 6.5 \times 10^{25} T^{1/2}$$

(68% CL)

After appropriate R&D : b = 0.001 and $\Gamma = 10$ keV $F^{0v} = 2.1 \times 10^{26} T^{1/2}$ (68% CL)