

Antonio Sidoti University of Pisa and INFN IFAE Torino 14 Aprile 2004

Outline:

Tevatron: CDF and DØ detectors
Baseline Electroweak Measurements
Electroweak precision measurements
Towards W Mass measurements

Fermilab Tevatron Upgrade RunII

- > New Main Injector:
 - > Improve p-bar production
- Recycler ring:
 - accumulate p-bars
 - Commissioning

Tevatron: Luminosity

Integrated Luminosity is the key for Tevatron RunII success.

Analysis presented here are based on different integrated luminosity period

Record Peak Luminosity (05/02/2004) 6.1×10³¹ cm⁻² s⁻¹ CDF Takes data at >85% Silicon integrated most of runs

Collider Run II Integrated Luminosity

Tevatron: Luminosity

DØ RunII Detector

Many improvements from RunI:

- Solenoid installed for RunII (2T 60cmx2.8m)
- ->New Tracking system
- Trigger + Electronics and DAQ

Si Tracker: Layers&Disks 8 Layers Fiber Tracker Preshower

Lepton ID

e/

μ

At hadronic collider W and Z bosons: p[–] decaying hadronically are overwhelmed by QCD background -> identification trough leptonic decays ^{p–}

W Signature: Isolated Lepton and MET

W Cross Sections

W Cross Sections

W→ev One isolated electron with Et>25 GeV $|\eta|$ <1.1 \pounds_{T} >25 GeV 27370 Candidates W→µv One isolated muon with Pt>20 GeV/c |η|<1.6 ₽_T>20 GeV 8305 Candidate ~12 % background contamination (mainly W→τν, Z→µµ)

Bosons decaying to Tau

Both CDF and D \varnothing in RunII can identify taus. CDF has a specific trigger identifying tau decaying hadronically conbining calorimetry and tracking.

- Tau reconstruction@CDF:
 - Count tracks in 10° τ -cone and veto tracks in 30° isolation cone
 - Reconstruct π^0 candidates in Shower Max detector
 - Combined mass < $m(\tau)$

W cross section measurements

CDF and DØ $\sigma(pp \rightarrow W) \times BF(W \rightarrow I_{V_l})$ Measurements(pb)

		Uncertainties		es	
Channel	Central Value	stat	syst	Lum	∫∠dt (pb-1)
CDF e η <1.1	2782	14	+61/-56	167	72
CDF e 1.1< 1 <2	.8 2874	34	167	172	64
D0 e ŋ <1.1	2844	21	128	284	42
CDF μ η <1.1	2772	16	+64/-60	166	72
DO μ η <1.1	3226	128	100	322	17
CDF τ η <1.1	2620	70	210	160	72
CDF Combined	d 2777	10	52	167	72

Theory (Stirling NNLO): 2731 \pm 10 pb

Z Boson Cross Section

Z-> ee Invariant mass distribution

Central Central (CC) + Central Plug (CP)

Z->µµ Invariant Mass Distributions

 $|\eta(1^{st} e)| < 1.0$ $|\eta(2^{nd} e)| < 2.8$

Extended coverage in the forward $|\eta| < 2.8$

Small backgrounds : QCD, Z/W $\rightarrow \tau$, cosmics (µ) < 1.5%

Entries / 3 GeV

QCD Bkg Contamination <1%

$Z \to \tau_h^{\, {}^{\scriptscriptstyle +}} \tau_\ell^{\, -} \colon \text{first look} \; !$

One τ decays in hadrons, the other decays in leptons Main Background from QCD

Taus from Z and W are a starting point:

Will use them for SUSY searches, top physics, etc...

CDF and DØ $\sigma(pp \rightarrow Z) \times BF(Z \rightarrow II)$ Measurements (pb)

Mass Range 66 GeV/ $c^2 < M_{II} < 116 \text{ GeV}/c^2$

		Uncertainties			
Channel	Central Value	stat	syst	Lum	∫Idt (pb⁻¹)
CDF e	255.2	3.9	+5.5/-5.4	15.3	72
DØe	275	9	9	28	42
CDF µ	248.5	5.9	+7.0/-6.2	14.9	72
DØμ	261.8	5.0	8.9	26.2	117
CDF Combined	d 254.3	3.3	4.3	15.2	72

Theory (Stirling NNLO): $252 \pm 9 \text{ pb}$

W and Z Cross Section

20 years of W and Z at hadronic colliders!

Lepton Universality

From W decaying in e and μ :

$$U = \frac{R_{\mu}}{R_e} = \frac{\Gamma(W \to \mu \nu)}{\Gamma(W \to e \nu)} = \frac{g_{W\mu}^2}{g_{We}^2}$$

g _u /g _e	
CDF measurement	1.011±0.018
World Average	0.993±0.025

From W decaying in τ : $U = \frac{R_{\tau}}{R_{e}} = \frac{\Gamma(W \to \tau v)}{\Gamma(W \to e v)} = \frac{g_{W\tau}^{2}}{g_{We}^{2}}$ g_{τ}/g_{e} CDF measurement 0.99±0.04±0.07

Z Forward Backward Asymmetry

Probing (Unique at Tevatron):

• Z/γ^* Interference in High Invariant

Mass Region (far from Z-pole)

Consistent with SM Constraints on non-SM Z Couplings soon!

DiBoson Production

- •DiBoson Coupling Measurements:
- ·Probe ewk boson self-coupling
- Sensitivity to physics BSM(Anomalous Couplings)

DiBoson Production

CDF Run 2 Preliminary 202 /pb

W-gamma

•One High-P_T lepton(e, μ) •One Photon($\Delta R_{(\gamma,I)}$ >0.7) •Large Missing E_T(E_T>8 GeV)

Consistent with SM

$$\sigma \bullet B(Z\gamma --> ll\gamma)SM= 5.4 \pm 0.3 pb$$

H

Sensitive to WWy and WWZ vertex

Dilepton selection (I+I-)

(small yield and background)

- •Higgs discovery channel
- •Right place to look for new Physics σ •BR(WW $\rightarrow \ell^+ \ell^- \nu \nu)_{Th} = 12.5 \pm 0.8 \text{pb}(NLO)$ Two complementary approaches:

∫Idt=200pb-1

Tight Lepton + Isolated Track selection (larger yield and background)

0

14.3 $^{+5.6}_{-4.9}$ (stat) ± 1.6 (sys) ± 0.9(lum) pb 19.1 ± 5.0 (stat) ± 3.6 (sys) ± 1.1(lum) pb

W Mass measurement: Runl

The Tevatron Run 1 combined W mass measurement was ready six years after end of RunI

Method: fit Transverse Mass distributions to MC varying M_W , including:

- detectors effects,
- •W decay
- •W production model

In Run I larger uncertainties coming from: Statistics

Detector Energy response

W Transverse Momentum

@PDF (correlated between experiments)

W Mass measurement: Runl

W Boson mass SM key parameter and for SM Higgs mass constraints

New Run I Top Mass Combined Measurement

W Mass measurement: Run II Prospects

Almost all systematic uncertainties will decreas with statistics(control samples) Goal for Run II (with 250 pb⁻¹)

- CDF Run II estimate (μ): = X±55(stat)±80(sys) MeV/c²
- We need to improve uncertainties:
- Radiative corrections (electrons)
- •QCD effects in W/Z production

Conclusions

CDF and DØ Detectors are taking data Baseline EWK Measurements well established Analyzing twice the integrated luminosity of Run I

Goals for Summer 2004:

~500 pb⁻¹ integrated luminosity per experiment. Measuring:

- Differential cross sections
- •W Mass, Direct $\Gamma(W)$
- Constraints on TGC and Physics Beyond SM

Tau Reconstruction at CDF

춖

- Start from narrow cluster in the central calorimeter
- Search for an energetic track pointing to it
- Define 2 cones 10 degrees (cyan) and 30 degrees (pink) - around the seed track
- Allow more tracks within cyan cone
- Disregard the candidate if there are tracks in between the pink and cyan cones
- Reconstruct energy clusters in shower max detector and make π⁰ candidates out of them
- Require effective mass of all the tracks and π⁰'s inside the 10° cone to be < 1.8 GeV (tau mass plus resolution)
- Expect E(cal) = sum(P)(tracks+π⁰)

A typical W-> τν candidate event

P. Murat, 2003/02/21, FNAL W&C

Photons at CDF

CDF: WW (III)

CDF: WW $\rightarrow e\mu\nu\nu$ candidate

 $\nu + \overline{\nu}$

μ

eµ channel has little Standard Model background
 Signal/Background ≈ 4

W Mass measurement: RunI Systematics

Uncorrelated Uncertainties (MeV/c^2) for W boson mass

Source	CDF μ	CDF e	DØ e
W Statistics	100	65	60
Lepton Scale	85	75	56
Lepton Resolution	20	25	19
PT(W)	20	25	15
Recoil Model	35	37	35
Selection Bias	18	-	12
Bkg	25	5	9

Correlated Uncertainties (MeV/c^2) for W bson mass

Source	CDF	DØ
PDF and Parton Luminosity	15	7⊕4
Radiative Corrections	11	12
Γ (W)	10	10

COT aging issues

Drift chamber aging:

- •Decline in operating performances with time
- •Loss of gains
- Caused by organic deposits on wires
- •Investigating the causes...

Aging is detected:

•Less charge collected, shorter pulse widths

- •Decrease of COT hit widths, smaller COT efficiency (impacts trigger XFT as well)
- •Smaller event yields($D^0 \rightarrow K\pi$ down 36%)

•Worse P_T resolution(DO $\rightarrow K\pi$ invariant mass resolution (15 \rightarrow 20 MeV/c²)

References:

http://www-cdf.fnal.gov/internal/upgrades/cot/cot_aging.html