

IFAE 2004 - Torino TOTEM: fisica diffrattiva all'LHC

Fabrizio Ferro INFN Genova

http://totem.web.cern.ch/Totem/

Collaborazione TOTEM: INFN Bari, CERN, ILK Dresda, INFN Genova, HIP Helsinki, IP Praga, Brunel University

Obiettivi di TOTEM

- Misura della sezione d'urto totale p-p a 14 TeV con un'incertezza dell'1% e indipendentemente dalla luminosità
- Misura dello scattering elastico p-p nel range $10^{-3} < -t < 10 \text{ GeV}^2$
- Studio di eventi diffrattivi, insieme con CMS.

Apparato sperimentale

- Rivelatori inelastici
 - T1 CSC Copertura ~3<| η |<~5
 - T2 GEM Copertura ~5< $|\eta|$ <~7
- Leading proton detectors
 - Rivelatori al Silicio dentro a Roman Pots (a 147,180,220 m dall'IP)

TOTEM

Rivelatori inelastici

I rivelatori inelastici di TOTEM sono tracciatori, disegnati per discriminare tra eventi beam-beam e di background (eg. beam-gas) per mezzo della riconstruzione del vertice primario.

Roman pots

Le RP consentono ai leading proton detectors di avvicinarsi al fascio.

14/04/2004

TOTEM

Leading proton detectors

I LPD devono essere efficienti a partire da $10\sigma(\sim1mm)+0.5mm$ e devono fornire una buona risoluzione ($\sim 20 \mu m$).

Si 3D

Ottica di LHC per TOTEM

$\mathcal{L}_{\text{TOTEM}} \sim 10^{28} \, \text{cm}^{-2} \, \text{s}^{-1}$

TOTEM necessita di brevi run con un'ottica speciale ad alto- β * (1540m) e bassa ϵ Angoli di scattering di pochi μ rad

Alto- β per una misura precisa dell'angolo di scattering

Di conseguenza: elevata dimensione del fascio

Numero di bunches ridotto (43 e 156) per evitare interazioni "a valle"

Parallel-to-point focusing (v=0):

Le traiettorie di protoni diffusi allo stesso angolo ma provenienti da vertici differenti

y =
$$L_y \theta_y^* + v_y y^*$$

x = $L_x \theta_x^* + v_x x^* + \xi D_x$
L = $(\beta\beta^*)^{1/2} \sin \mu(s)$
v = $(\beta/\beta^*)^{1/2} \cos \mu(s)$

Massimizzare L e minimizzre v

 $\sigma(\theta^*) = \sqrt{\epsilon} / \beta^* \sim 0.3 \,\mu\text{rad}$ $\sigma^* = \sqrt{\epsilon} \beta^* \sim 0.4 \,\text{mm}$

14/04/2004

Fabrizio Ferro – IFAE 20

Misura di σ_{tot}

Misura della sezione d'urto totale indipendentemente dalla luminosità usando il Teorema Ottico.

Misura dello scattering elastico e inelastico con una precisione inferiore all'1%.

TOTEM

20 E E 15

10

5

0

-5

-10

-15

Fabrizio Ferro – IFAE 2004 Torino

 10^{-1}

ւնուտի

1

10

 $-t(GeV^2)$

10²

0.1 oEuuli

 10^{-3}

 10^{-2}

Risoluzione su t e ϕ

 $\sigma(t)/t$ vs risoluzione del rivelatore

Estrapolazione a t=0

La misura di σ_{tot} necessita di $(dN/dt)_{t=0}$ che si può stimare con un errore statistico dello ~0.1% (considerando 10⁷ eventi ricostruiti dopo 10h di run a L=10²⁸).

Sezione d'urto inelastica

Selezione:

- trigger da T1 o T2 (*double arm o single arm*)
- Ricostruzione del vertice (per eliminare il fondo beam-gas)

	Losses	${\rm Double \ arm}$		Single arm	
Eventi persi	Process	%	mb	%	mb
	Minimum bias	0.5	0.3	< 0.1	< 0.06
	Double Diffractive	39.5	2.8	4.6	0.3
	Single Diffractive	-	-	17.9	2.5

Estrapolatione necessaria per eventi diffrattivi

Sezione d'urto totale

(σ_{inel} .~80mb, σ_{el} .~30mb)

Perdite (mb)

	σ(mb)	Double arm	Single arm	Incertezza dopo l'estrapolazione		
Minimum bias	58	0.3	0.06	0.06		
2 x singolo diffractivo	14	-	2.5	0.6		
Doppio diffractivo	7	2.8	0.3	0.1		
Doppio Pomerone	1	-	-	0.02		
Elastico	30	-	-	0.1		
$\frac{\Delta \sigma_{tot}}{\sigma_{tot}} \approx \sqrt{0.008^2 + 0.005^2} \approx 0.01$						

TOTEM

Diffrazione ad alto β^*

>90% dei protoni diffrattivi sono visti nelle the Roman Pots

Il momento del protone può essere misurato con una risoluzione di qualche per mille

TOTEM

CMS/TOTEM

CMS/TOTEM è il rivelatore con la più grande accettanza mai costruito ad collider adronico

1 giorno di run a alto beta (1540m) e L=10²⁹cm⁻²s⁻¹:

100 milioni di eventi minimum bias, includendo tutti i processi diffrattivi

>90% di tutti i protoni diffrattivi vengono rivelati

Processi singolo diffrattivi

TOTEM

Processi doppio diffrattivi

TOTEM

X

TOTEM

Scambio di doppio Pomerone

Il Pomerone ha i numeri quantici del vuoto.

Level-1 Trigger

TOTEM

Elastic Trigger: Segnale: 500 Hz Background: 20 Hz

Single diffractive Trigger:

Segnale: 200 Hz Background: 0.1 Hz

Double Diffractive Trigger:Segnale:100 Hz

Central Diffractive Trigger:

Segnale:10 HzBackground:2 Hz

Minimum Bias Trigger:

Segnale: 1

1 kHz

TOTEM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC Eliminazione fondi **RP** Station **RP** Station 1P coincidence. angular cut, track multiplicity cut $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ coincidence, track selection hit multiplicity cut T1/T2, T1/T2,-CMS CMS global trigger **RP** Unit **RP** Unit

- Beam Halo (dominante): riducibile con la coincidenza a 2-bracci
- Shower particles da interazioni beam-beam, beam-gas, beam-machine: Riducibile tramite:
 - Coincidenze mutiple
 - Tagli angolari
 - Tagli sulla molteplictà di hit e tracce

- Per facilitare l'acquisizione comune, DAQ e Trigger saranno implementati in maniera CMS-compatibile
 - La compatibilità hardware e software apre la possibilità per TOTEM di unirsi al DAQ di CMS durante i run comuni.
 - I front-ends si conformeranno al CMS Trigger Control System nel caso in cui TOTEM voglia contribuire al Trigger di CMS.
- Possibili schemi di trigger
 - Il GT di CMS riceve il trigger di TOTEM e manda un L1A sia ai front-ends di TOTEM sia a quelli di CMS.

Scenari

Scenario	1	2		3	4
(goal)	low t elastic,	diffr. phys.,		diffr. phys., intermediate t ,	
	σ_{tot} , min. dias	large p _T phen.		naru diffract.	
β* [m]	1540	1540		200 - 400	18
N of bunches	43	156		936	2808
Half crossing angle [µrad]	0	0		100 - 200	160
Transv. norm. emitt. [µm rad]	1	1	3.75	3.75	3.75
N of part. per bunch	0.3 x 10 ¹¹	0.6 x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹	1.15 x 10 ¹¹
RMS beam size at IP [µm]	454	454	880	317 - 448	95
RMS beam diverg. [µrad]	0.29	0.29	0.57	1.6 - 1.1	5.28
Peak luminos. [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	2.4 x 10 ²⁹		(1 - 0.5) x 10 ³¹	3.6 x 10 ³²

14/04/2004

Esempi con differenti scenari

Luminosità 2.10²⁹ cm⁻² s⁻¹

Acquisizione dati per diffrazione soffice : 20 mb ---- 4 kHz ---- 4.10 ⁸ eventi / 1 giorno

Doppio Pomerone : 1 mb 2.10⁷ eventi / 1 giorno

Studio preciso di fenomeni diffrattivi soffici

Luminosità 10 31 cm -2 s -1

Alcuni run con 4 10 ⁵ s \longrightarrow 4 10 ³⁶ cm ⁻² \longrightarrow 4000 evts / nb

Scambio di Doppio Pomerone

Masse elevate dell'ordine del TeV

$$\chi_c \longrightarrow 10^{6-7}$$
 eventi

 $\chi_b \longrightarrow 10^{3-4}$ eventi

Getti ad alto pt ------ dijet coplanari con due protoni sopravvissuti e nient'altro

Diffrazione singola con getti ad alto pt e leptoni

Studio di rapidity gaps con l'identificazione dei protoni

TOTEM

- TOTEM TDR presentato all'LHCC a gennaio LHCC 2004-002/TOTEM TDR 1
- Un TDR sul programma di fisica comune CMS/TOTEM verrà presentato in seguito.

