Ricerca di fisica oltre il Modello Standard ad HERA

Chiara Genta

(INFN sezione di Firenze e Università degli studi di Firenze)

per le collaborazioni ZEUS e H1

Ricerche di nuova fisica ad HERA I

Interazioni di contatto e risonanze: • Fermioni eccitati

- Interazioni di contatto
- Large Extra Dimensions
- Raggio dei quark
- Leptoquark
- Violazione del sapore leptonico
- SUSY in MSSM con conservazione di ${\cal R}_p$
- SUSY con violazione di R_p

Stati finali esclusivi:

- Leptoni isolati e impulso trasverso mancante
- Produzione di top quark via FCNC
- Eventi con ≥ 2 elettroni o muoni
- H^{++/--}
- Monopoli magnetici

Fisica ad alto Q^2 ad HERA II

• Misura della sezione d'urto di CC con positroni polarizzati

HERA	I

$e^{+}(e^{-})$ p				Physics Lu	minosity	/ 1993 – 20	00	
	27.5 G	ieV S	20 GeV	uminosity (pb ⁻¹)) - ' ' ' ' ' ' - - - - -) - - - - - -		2000	-40
		(8	520 GeV)	30 Jrated L	- - - -	/	, ,	-30
		Energia	Luminosità	Integ	-	م م	1999	
Anno	Fascio	centro di	integrata	20				-20
		massa	ZEUS – H1		199	1997 9	996	-
94-97	e^+	$300 {\rm GeV}$	$47.7 \text{ pb}^{-1} - 35.6 \text{ pb}^{-1}$	10			1995	-10 1
98-99	e-	$318 { m ~GeV}$	$16.7 \text{ pb}^{-1} - 16.4 \text{ pb}^{-1}$			98	94	
99-00	e^+	$318 { m ~GeV}$	$65.1 \ \mathrm{pb^{-1}} - 65.2 \ \mathrm{pb^{-1}}$			93	200]

Interazioni di contatto

HERA può sondare nuova fisica fino a scale di massa ~TeV e a distanze ~ 10^{-16} cm Lagrangiana (componente vettoriale):

$$\mathcal{L}_{CI} = \sum_{q} \sum_{i,j=L,R} \eta_{ij}^{q} (\bar{e}_{i} \gamma^{\mu} e_{i}) (\bar{q}_{j} \gamma_{\mu} q_{j})$$

- Compositeness $\eta_{ij} = \epsilon_{ij} \frac{4\pi}{\Lambda^2}$
- Leptoquark $\eta_{ij}^q = \epsilon_{ij}^q \frac{\lambda^2}{M_{LQ}^2}$
- SUSY con violazione $R_p \longrightarrow \tilde{d}_R e \ \bar{\tilde{u}}_L$ corrispondono ai LQ $S_0^L e \ \tilde{S}_{1/2}^L$
- Large extra dimensions $\eta_G = \frac{\lambda}{M_S^4}$
- Raggio del quark \longrightarrow assumendo $R_e = 0$: $\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 \frac{R_q^2}{6}\right)^2$

Interazioni di contatto II

Limiti su compositeness (Λ):

ZEUS: $0.85 \cdot 10^{-16}$ cm H1: $1 \cdot 10^{-16}$ cm

Violazione del sapore leptonico

- La recente scoperta delle oscillazioni dei neutrini ha mostrato che il numero leptonico non si conserva separatamente per famiglie di leptoni
- Molte estensioni del Modello Standard (GUT e modelli SUSY con violazione di R_p) contemplano la violazione del sapore leptonico. In questa analisi: Leptoquark (modello BRW)
- $\tau \rightarrow \text{adroni } \nu$ jet collimato con 1–3 tracce associate nella direzione del R_t
- $\tau \to \mu(e) \nu \bar{\nu}$ muone (elettrone) con alto p_t nella direzione di R_t
- Basso fondo dal Modello Standard

Violazione del sapore leptonico II

Ultimi risultati di ZEUS $ep \rightarrow \tau X$ in 99–00 e^+p data. τ -finder:

6osservabili che descrivono la forma del jet

Violazione del sapore leptonico III

Limite su $\lambda_{eq_1}\sqrt{B_{\tau q_j}}$ per $M_{LQ} < \sqrt{s}$ indipendente dalla generazione del quark dello stato finale (su $\frac{\lambda_{eq_i}\lambda_{\tau q_j}}{M_{LQ}^2}$ per $M_{LQ} \gg \sqrt{s}$)

Fissato $\lambda_{eq_1} = 0.3$ e $B_{\tau q_j} = 0.5$ possono essere escluse masse fino a 299 GeV

Limiti di ZEUS migliori quando sono coinvolti quark pesanti

Per $\lambda'_{1j1} = 0.3 \ (\lambda'_{11k} = 0.3)$ si escludono masse di squark al di sotto di 275 (280) GeV

Supersimmetrie con violazione R_p III

mSUGRA (minimal supergravity):

Limiti su $(m_0, m_{1/2})$ fissati gli altri parametri del modello

Per tan $\beta = 6$ limiti su \tilde{t} migliori di LEP e TeVatron. Escluse masse fino a 270 GeV

Supersimmetrie con violazione R_p III

Superlight gravitino:

Modello GMSB con il gravitino LSP assumendo $BR(\chi^0_1\to\gamma G)=100\%$ In questo modello

 $M_{slepton} \ll M_{squark}$

1 evento $(2.55\pm1.30$ MS) Escluse $M_{\chi^0_1}<108$ GeV per $\lambda'_{1j1}=1$ (OPAL 91 GeV)

Supersimmetrie con violazione R_p IV

Produzione di Stop:

Escluse $M_{\tilde{t}} < 295$ GeV al 95% C.L.

M₇[GeV]

Leptoni isolati e impulso trasverso mancante

			Elettroni	Muoni		Tau	
	P_T^X	Dati	MS	Dati	MS	Dati	MS
H1	$12 < P_T^X < 25 {\rm GeV}$	1	$1.96 {\pm} 0.27$	2	$1.11 {\pm} 0.19$		
	$25 < P_T^X < 40 {\rm GeV}$	1	$0.95 {\pm} 0.14$	3	$0.89 {\pm} 0.14$		
	$P_T^X > 40 {\rm GeV}$	3	$0.54 {\pm} 0.11$	3	$0.55 {\pm} 0.12$		
ZEUS	$P_T^X > 25 \text{GeV}$	2	2.9 + 0.59 / -0.32	5	2.75 ± 0.21	2	$0.20{\pm}0.05$
	$P_T^X > 40 { m GeV}$	0	0.94 + 0.11 / -0.10	0	0.95 + 0.14 / -0.10	1	$0.07{\pm}0.02$

H1 trova un eccesso di eventi nei canali studiati (e, μ)

<code>ZEUS</code> trova un eccesso solo nel canale τ

In entrambi i casi l'eccesso è tra i dati e^+p

Possibile spiegazione:

Produzione di top quark mediante processo **FCNC** con costanti di accoppiamento magnetica $k_{tu\gamma}$ e vettoriale v_{tuZ} anomale

In ogni caso l'eccesso di ZEUS nel canale τ non è compatibile con gli altri canali leptonici

Canale leptonico (e, μ) :

Solo e^+ , μ^+ compatibili con single t $P_t^{jet} > 30 \text{ GeV}$, $P_t^X > 40 \text{ GeV}$ e $M_{l\nu b} > 140 \text{ GeV}$ H1: 5 eventi (3e e 2 μ), 1.31 ± 0.22 dal MS ZEUS: nessun evento

Nessun eccesso nel canale adronico in entrambi gli esperimenti

Single top II

ZEUS

Eventi con 2 o più leptoni

3e

Event 4

H1 trova un eccesso di eventi con 2 o 3 elettroni isolati e alta massa invariante (M > 100 GeV)

Event 3

Eventi con 2 o più elettroni

Chiara Genta

IFAE 2004–Torino, 14-04-2004

Eventi con 2 o più muoni

Buon accordo con il Modello Standard. Nessun evento con più di 2 muoni osservato

Produzione di H^{++/--}

 $H^{++/--}$ è previsto in alcuni modelli con settore del bosone di Higgs esteso come LRS (Left-Right Symmetric) $\mathbf{a}^{\mathfrak{s}}$ Eccesso negli eventi con 2 e 3 elettroni di H1 dovuto a produzione di $H^{++/--?}$

Solo uno degli eventi con M > 100 GeV compatibile con $H^{++/--}$ (cinematica e carica degli elettroni) H1 Higgs search: $H^{\pm\pm}$ limits

Ricerca generica di fisica oltre il MS

Due o più oggetti isolati con alto p_t (elettroni, muoni, fotoni, jet)

Discrepanza rispetto ai dati quantificata dall'estimatore p. Per ogni classe di eventi si considera la regione con p_{min} per M_{all} e $\sum p_t$ $-\log \hat{\mathbf{P}} = \mathbf{probabilità}$ di misurare $\mathbf{p} = \mathbf{p_{min}}$

Sezione d'urto correnti cariche

$$e^{+}p: \quad F_{2}^{CC} = x[(d+s) + (\bar{u} + \bar{c})]$$
$$xF_{3}^{CC} = x[(d+s) - (\bar{u} - \bar{c})]$$
$$e^{-}p: \quad F_{2}^{CC} = x[(u+c) + (\bar{d} + \bar{s})]$$
$$xF_{3}^{CC} = x[(u+c) - (\bar{d} - \bar{s})]$$

 $e^{+(-)}$ sensibile al quark d(u). A basso Q^2 dominano i quark del mare: $\sigma^{CC}(e^-p) \sim \sigma^{CC}(e^+p)$

Primi risultati di HERA II

NC: variabili adroniche ben simulate

CC: buon accordo con le previsioni del MS ZEUS

Misura di σ_{CC} con positroni polarizzati

ZEUS:

con $Q^2 > 400 \text{ GeV}^2$, $P = 33\% \text{ e } \mathcal{L} = 6.6 \text{ pb}^{-1}$

 $\sigma(e^+p) = 37.8 \pm 2.9(stat) \pm 0.79(syst) \pm 2.0(lumi)$ pb

Conclusioni

HERA I:

- Test del Modello Standard eseguito per varie tipologie di eventi su tutta la statistica di HERA I
- Alcune discrepanze non risolte (eventi con leptoni e impulso trasverso mancante, eventi con 2 o 3 elettroni e alta massa invariante)

HERA II:

- Possibilità con maggiore statistica di fare luce sulle questioni non risolte di HERA I
- La polarizzazione degli elettroni permette test del Modello Standard fino ad ora mai eseguiti
- Primi risultati di fisica ad alto Q^2 : sezioni d'urto di correnti cariche con positroni polarizzati in accordo con il Modello Standard