

SUSY Searches at the Tevatron

Mario Paolo Giordani Università degli Studi di Udine & INFN Trieste IFAE 04 – Torino (Italy) April 14th, 2004

Outline

Accelerator performance Tevatron detectors Higgs sector \blacksquare Classical missing E_T Third generation sfermions Trilepton-based Photon+missing E_{T} CHAMPs \blacksquare High tan β scenario Indirect searches

Tevatron performance

Excellent performance in 2004 450pb⁻¹ delivered in RunII 300(DØ) to 350(CDF) pb⁻¹ on tape 200 to 250pb⁻¹ analyzed by each experiment

CDF & DØ

No SUSY without Higgs

- Dynamics for electroweak symmetry breaking still unknown
- Low-energy SUSY provides viable SM extension predicting light Higgs boson
- SUSY Higgs sector richer than SM
 5 Higgs states: h,H,A⁰,H[±]
 upper bound on m_h

SM Higgs

LEP2: m_H>114.4GeV/c² @95%C.L. Tevatron will need time & luminosity...

even if light Higgs seems to be favoured

Mario Paolo Giordani

MSSM Higgs

MSSM reach inferred from SM Higgs:

effect of upper bound on m_h: wide exclusion Mario Paolo Giordani

MSSM Higgs: 4b-jets Powerful signature: $gg, q\overline{q} \rightarrow \Phi bb, \Phi \rightarrow bb$ require at least 3 b-tags out of 3 or 4 jets $\Phi \rightarrow bb$ suppressed by stop mixing CDF Excluded **CDF Run I & Run II Projections**

Mario Paolo Giordani

Missing E_T Signature

Best squark/gluino sensitivity

- Jets from cascade decays \rightarrow moderate E_T jets
- Missing E_T from multiple sources \rightarrow moderate missing E_T

need full understanding of detector!

Squarks and gluinos

DØ Run II Preliminary Getting into new region Cross-section (pb) 10 Signal cross-section Mapping work in progress Excluded cross-section squark mass (GeV/c²) ADLO Preliminary 400 CDF & D0 Run I 220 230 240 250 260 270 280 290 300 310 300 Squark Mass (GeV/c²) DØ Run II Preliminary LEP D0'DI 200

Gluino Decay into Sbottom

■ Large $\tilde{g}\tilde{g}$ production cross-section ■ Possible decays: $\tilde{g} \rightarrow \tilde{q}\bar{q}$ (but \tilde{q} heavy) $\tilde{g} \rightarrow \tilde{b}\bar{b}$ $\tilde{g} \rightarrow \tilde{t}\bar{t}$ (but t heavy) $\tilde{g} \rightarrow g\tilde{\chi}$

Striking signature: 4b-jets+missing E_T 1 or 2 b-tags out of at least 3 jets $E_T > 50 \text{GeV}$

Gluino Decay into Sbottom

Main backgrounds: mistags and tt
 expected: 5.65±1.34 (1b-tag),0.5±0.1 (2b-tag)
 observed: 4 single and 1 double b-tagged evts

Lepton-based Signatures

Trilepton-based chargino-neutralino Very clean, convincing proof of SUSY mSUGRA prediction at reach

Like-Sign Dileptons

Release third lepton request Increase acceptance LS requirement for background rejection

DiPhoton+Missing E_T

Gravitino LSP → NLSP is \$\tilde{\chi}_1^0\$ or \$\tilde{\ell}\$ if neutralino NLSP: \$\tilde{\chi}_1^0\$ → \$\chi \tilde{\G}\$ SUSY signatures complemented by \$\chi \chi \chi}\$

GMSB SUSY

DØ sets $m(\tilde{\chi}_1^0) > 105 \text{GeV}/c^2$, $m(\tilde{\chi}_1^{\pm}) > 180 \text{GeV}/c^2$ improves LEP limits!

CDF results with 200pb⁻¹ coming soon

CHArged Massive Particles

Charged massive particles predicted by many models stable $\tilde{\ell}$, \tilde{q} or gauginos due to couplings & kinematic constraints \blacksquare stable \Rightarrow escape detector \blacksquare massive \Rightarrow slowly moving Use TOF data \blacksquare \triangle TOF wrt particle speed=*c* ■ signal: △TOF>2.5ns Stable stop (NLSP): $Iint m(\tilde{t}) > 108 \text{GeV}/c^2$

SUSY @ high $tan\beta$

Standard trilepton: $p\overline{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \nu_{\ell} \ell \tilde{\chi}_1^0 \ell^+ \ell^- \tilde{\chi}_1^0$ with $\ell = e, \mu$ 0.5 For $tan\beta > 8$ $\Box \tau$ becomes important 0.4 **Branching fraction** ττ trilepton τττ 0.3 $\blacksquare A \rightarrow \tau \tau$ $\blacksquare \tilde{t} \rightarrow \tau b \ (\mathcal{R}_{p} \ mode)$ 0.2 New tools: 0.1 Iepton+track triggers 0 **progress** on τ id 18 20 2 6 8 10 14 16 22 12 tan β see E. Vataga's talk

SUSY in B Decays

■ Enticing probe for SUSY: B_s → μ⁺μ⁻ ■ SM: no FCNC @ tree level ■ BR(B_s→μμ)~3.4·10⁻⁹ ■ SUSY corrections boosts decay:

 $\propto \tan^6 \beta$

■ $B_d \rightarrow \mu^+ \mu^-$ CKM-suppressed ■ Discriminating variables: ■ $M_{\mu\mu}$, $c\tau$, $\Delta \phi$ (dimuon,vertex) & isolation

 CDF 95% *C.L.* limits:
 BR(B_s $\rightarrow \mu\mu$)=7.5·10⁻⁷ *BR*(B_d $\rightarrow \mu\mu$)=1.9·10⁻⁷ world best
 DØ 95% *C.L.* expected limit:
 BR(B_s $\rightarrow \mu\mu$)=1.0·10⁻⁶

Conclusions

Tevatron running at world's highest energy

- Luminosity records resulting in 0.3fb⁻¹ of physics quality data accumulated
- RunII SUSY limits approaching and surpassing LEPII
- Searching for SUSY in a large variety of channels
- Hope to see first signs or even discover SUSY before LHC
- See S.Rolli's talk for more Tevatron results