of the Standard Model fit

and perspect

• The present

SEUE

- The near future
- Speculations.....

Roberto Chierici CERN

Torino, Aprile 2004

Incontri sulla Fisica delle Alte Energie

Foreword/disclaimer

Beware! In this talk:

- ✓ I will not review the Higgs searches
- ✓ I will not go through the list of the observables input to the Standard Model (SM)
- fit (or EW fit) describing each of them I will not go into experimental details of the analyses I will talk about (see this session for further information)
- ✓ I will consider the SM hypothesis only
- I will not comment (unless asked to) on theory/parametric uncertainties in the fit (see previous talk)
- I will almost not comment (unless asked to) on the LHC potential (tomorrow session), ending my perspectives at the years 2007-2009

On the other hand:

- ✓ I will try to give space to both the ways in which the SM Higgs is searched for today: directly (LEP, Tevatron) and indirectly (EW fit)
- ✓ I will briefly review the hottest contradictions in the ÉW fit at present
- ✓ I will focus on the most interesting (and sensitive to the Higgs mass) parameters
 ✓ I will focus on those SM parameters and inputs to the EW fit which are more likely
- to evolve in the pre-LHC era
- ✓ I will try to give an unbiased picture of what the Higgs constrain (or discovery) can be at the start of the LHC and a bit further ahead

Basically a talk on Tevatron? Maybe...

Fast, fast, fast...

SM Higgs direct search at LEP

Search mainly in ZH→ff bb

Important ingredients of the analyses:

- High b-tagging efficiency/purity
- Kinematical reconstruction (like W mass)
- ⇒ Good understanding of the detector is essential (tails!)

LEP final combination:

- Combine 2D distributions (m_H(rec.), discriminant variable)
- Use likelihood ratio test hypothesis: Q(m_H)=L(s+b; m_H) /L(b; m_H)
- The integral of -2InQ over ranges of m_H gives the confidence levels

Final LEP Higgs limit

Confidence level for background and signal:

1.7 σ excess (8% probability) over the background, concentrated in one channel (qqbb) and one experiment (ALEPH, ~3 σ)

\Rightarrow Final LEP2 limit: m_H>114.4 GeV/c² @95% CL

What we (think we) know

The uncertainties on m_t, m_w are the dominating ones in the electroweak fit

By making precision measurements (already interesting per se): • one can get information on the missing parameter m_H

• one can test the validity of the Standard Model

A global fit?

All precision "observables" in the SM fit are calculated in terms of a small set of input parameters: m_Z , G_{μ} , $\alpha(m_Z)$, m_I , m_q , m_t , m_H , α_s . They constitute the fit parameters. Both observables and input parameters are constraints in the fit and are subject to their experimental uncertainties.

Theory errors in the expressions of the "observables" introduce further uncertainties m_z , G_{μ} , $\alpha(0)$, m_l are the most precisely measured input parameters –can be seen as fixed in the fit-, $\alpha_s(m_z)$ is very well constrained

- ⇒ the dominant uncertainties come at present from:
 - The top mass m_t
 - The hadronic contribution to the fine structure constant $\Delta \alpha_{had}$
 - The Higgs mass itself m_H
- \Rightarrow the dominant theory errors involve:
 - $sin^2\theta_{eff}$
 - The W mass m_W

Amongst the experimental measurements leading to precision "observables", m_W and $\sin^2\theta_{eff}$ are the most sensitive parameters to m_H .

What we measured

 $Q_w(Cs)$

Not a very healthy fit (P less than 5%)

> Anomaly #1

 $sin^2 \theta_{eff}$ from quark asymmetries agree each other and point towards a heavy Higgs $sin^2 \theta_{eff}$ from lepton asymmetries agree each other and prefer a light Higgs Separately they (dis)agree at the 3σ level

➤ Anomaly #2

NuTeV measures $\sin^2\theta_W$ from NC/CC vN DIS cross sections, and its measure is 3σ away from the predictions (feeling is that the TU are largely underestimated)

Anomaly #3 The Higgs boson is not found yet

All "anomalies" concern very m_H sensitive variables !

15%)		Fit		^s –O ^f	
	$\Delta \alpha_{\rm L}^{(5)}$ (m _z)	0.02761 ± 0.00036	0.02767		
e each	m ₇ [GeV]	91.1875 ± 0.0021	91.1875		
S	Γ ₇ [GeV]	2.4952 ± 0.0023	2.4960		
e each	$\sigma_{had}^{\overline{0}}$ [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.478		
.	R	$\textbf{20.767} \pm \textbf{0.025}$	20.742		
evel	A ^{0,I}	0.01714 ± 0.00095	0.01636		
	Α _I (Ρ _τ)	0.1465 ± 0.0032	0.1477	 	
	R _b	0.21638 ± 0.00066	0.21579		
VN DIS	B	0.1720 ± 0.0030	0.1723	•	
away from	(A ^{0,b} _{fb})	0.0997 ± 0.0016	0.1036		
	A ^{0,c}	0.0706 ± 0.0035	0.0740		
	A _b	$\textbf{0.925} \pm \textbf{0.020}$	0.935		
	A	$\textbf{0.670} \pm \textbf{0.026}$	0.668	•	
	(AI(SLD)	0.1513 ± 0.0021	0.1477		
	$\sin^2 \theta_{eff}^{iept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		
\backslash	m _w [GeV]	$\textbf{80.426} \pm \textbf{0.034}$	80.385		
\backslash	Г _w [GeV]	$\textbf{2.139} \pm \textbf{0.069}$	2.093		
itive	m₊[GeV]	174.3 ± 5.1	174.3		
	cin ² 0 (vNI)	0.2277 ± 0.0016	0 2220		

 -72.84 ± 0.46

-72.90

0

2

3

Summer 2003

Where we were

Not the ideal one...

Are we satisfied?

The Chanowitz point of view

The poor consistency of the m_H sensitive sector (m_W, A_{LR}, A_{FB}^b) is cause for concern in assessing the reliability of the SM predictions of m_H .

Did I tell the whole truth?

Not really! On the (suspicious) date of the 1st April a new Tevatron combined top mass was produced with consequent effect on the "blue-band" plot...

Yes, ok...

Tevatron now and in the future

Direct search at the Tevatron

The direct SM Higgs search at the Tevatron is based on W/Z+H production

Dijiet Mass (GeV/ c^2)

Discovery potential at the Tevatron

Around-the-corner SM Higgs

that Tevatron will have at least a 3σ excess before LHC if the Higgs mass is 120 GeV/c². Example 2: there is a probability of 30% that Tevatron will have discovered the Higgs in 2009 if the Higgs mass is 120 GeV/c².

If the Higgs is very close to 115 GeV/c², A 3σ excess can be seen with only 3/fb. 8/fb or more needed for a 5σ discovery.

Near future of m_t

Tevatron only, through the analyses of di-lepton events or lepton+jet from the decay of the Ws

Perspectives: just a matter of statistics (also for the main systematics) and optimized use of the available information One Tevatron experiment alone expects 500 b-tagged tt I+jets events/fb: \Rightarrow 2-3 GeV/c² can be expected for the Tevatron combined value per 2-4/fb In 2009, if the upgrade plan is respected, an error on m_t of 1.5 GeV/c² from Tevatron alone is expected **Roberto Chierici** 19

Near future of m_w

	qqℓv	qqqq	Both	
ISR/FSR	8	8	8	
Hadronisation	19	18	18	
Detector	14	10	14	▼
LEP Beam Energy	17	17	17	
Colour Reconnection	_	90	9	
Bose-Einstein	_	35	3	
Total Systematic	31-	101	31	-
Statistical	32	35	29	

One Tevatron experiment alone expects: $\delta m_W = 55$ (stat) ± 80 (syst) MeV/c² per 100/pb Statistics and systematics approximately scale with N^{-1/2}

⇒ 40 MeV/c² (exp) per experiment are expected per 2/fb (that makes about 30 MeV/c² CDF+D0 combined) ⇒20 MeV/c² combined can be in the reack for 4/fb

In 2009, if the upgrade plan is respected, an error on $m_{\rm W}$ of 15 MeV/c² from Tevatron alone is expected

Roberto Chierici

LEP is completing its W mass analyses+ combination Bottleneck in the systematic part of the fully hadronic channel: FSI ! Not easy to say what will be the final error, hereafter I will assume it will stick to 40 MeV/c² (not unrealistic, anyway...)

$$m_W^T = \sqrt{2 p_l^T p_v^T (1 - \cos \Delta \phi)}$$

- Isospin violations (u_p(x)≠d_n(x)) within the experimental reach could also explain 1/3 of the discrepancy
- Nuclear shadowing and other nuclear effect under study, though less convincing
- New physics/supersimmetry cannot easily account for this (f.i. Gambino hep-ph/0211009)
- EW corrections should be small (small sensitivity)

"MRST has performed a global analysis including possibility of isospin violation [...] this could potentially reduce NuTeV discrepancy by $1-1.5\sigma$, although range of allowed isospin violation could also remove discrepancy altogether or make it worse [...] conclusion is that existing data allows level of isospin violation which could either solve NuTeV discrepancy or make it worse"

 $q^{-} = \int_{0}^{1} x[q(x) - \overline{q}(x)] dx$

 \Rightarrow If the theory error associated to the measurement does not account for this, it is underestimated \Rightarrow Stay tuned for an update

http://home.fnal.gov/~gzeller/nutev.html#NLOQCDCorrections, linked from the main NuTeV page

That's what I am good at...

Copyright © 2003 Creators Syndicate, Inc.

δm_H

Indirect error on m_H

From the improved expected errors on m_w and m_t

Awramik, Czakon, Freitas, Weiglein, hep-ph/0311148 (analytical expression of m_w as a function of m_t and m_H with two-loop corrections. Valid at the 0.5 MeV/c^2 scale)

40 GeV

4.5

5

 $\delta m_{\rm t}$

Constraining in the pre-LHC era

Conclusions

- ✤ LEP approaching the end of its inputs: m_w at the 40 MeV/c² level, no significant excess compatible with the SM Higgs boson.
- Tevatron is going well. There are different plausible perfomance pictures before LHC: here we have chosen a range of luminosities between 2 and 4/fb
- New Tevatron combination partly reconcile the SM fit with the unsuccessful Higgs direct searches
- \gg In the pre-LHC era Tevatron is the key: dancing EW fit in the next years (m_t, m_w)
- Anomalies here and there still present in the EW fit.
- The most controversial one (that will remain such for a long time) concerns the lepton vs quark asymmetries and their effect on m_H
- sin² θ_{W} : changes expected from updated NuTeV and E158 inputs...
- (b) In the Higgs-around-the-corner hypothesis chances are Tevatron closes the game
- In the mass regime of about 120 GeV/c² the Higgs will probably be a LHC+Tevatron discovery
- (B) For higher masses only LHC can tell, but indications still can come from Tevatron
- In the absence of signal, the Higgs can be constrained in the SM up to 25% before the start of the LHC

Parametric and theory uncertainties

In the SM fit all "observables" are expressed in terms of a few input parameters \Rightarrow two sources of errors come into play in the fit

- Errors on the input parameters themselves (from data) propagate in the fit and give origin to the parametric uncertainties.
 Reprint depute on metric content on the content on
 - \blacktriangleright dominated by the error on m_t
- Unknown higher orders in the predictions (truncation errors) also add uncertainties which are genuine theory uncertainties.
- \bowtie dominated by errors on m_W and $sin\theta_{eff}.$

The blue band in the $m_{\rm H}~\chi^2$ curve includes the effect of all theory uncertainties

	$\delta sin \theta_{eff}$ (10 ⁻⁴)	δm _w (MeV/c ²)
PU m _t	3	30
PU $\Delta \alpha_{had}$	1	6
TU	0.6	4

There is a general consensus that it can be determined by comparing codes with different, but equivalent, factorisation schemes or resummation techniques...a reasonable shortcut

The inclusion of higher order corrections in the codes improves the theory error:

- ★ $\Delta \alpha_{had}$ –largest uncertainty to $\alpha(m_z)$ is used in two different estimations, data driven (0.02761±0.00036 $\Rightarrow \delta m_W \sim 7 \text{ MeV/c}^2$) or theory driven (0.02747±0.00012)
- * m_w with fermionic and bosonic two loops correction $\Rightarrow \delta m_W \sim 4 \text{ MeV/c}^2$

Perspectives pre-LHC:

 $sin^2\theta_{eff} = (1 + \Delta k) sin^2\theta_W$ at the two-loops (fermions and bosons) is close (Awramik et al) Roberto Chierici 28

Asymmetries

Assuming lepton universality:

The precision observables

Are the ones that at tree level depend only on α_{em} ,GF, Mz, and $sin\theta_W$

At tree level: $G_F = \pi \alpha / \sqrt{2} m_W^2 \sin^2 \theta_W$ $\rho \equiv m_W^2 / m_Z^2 \cos^2 \theta_W = 1$

relation between EM and Weak constants relation between neutral and charged weak coupling

The interaction of the Z with fermions is given by the left- and right- handed couplings g_L and g_R :

 $g_{L} = \sqrt{\rho} (I_{3} - Q \sin^{2}\theta_{W})$ $g_{R} = \sqrt{\rho} (Q \sin^{2}\theta_{W})$

left fermions couple with Z and γ right fermions couples with γ

or alternatively Vector and Axial couplings:

$$g_V = g_L - g_R , \qquad g_A = g_L + g_R$$

 $\begin{array}{rcl} A_{LR} = \sigma_{LR} \, / \, \sigma_{TOT} & = & A_e \\ & = & 2 \, g_{Ae} \, g_{Ve} \, / \, (g^2_{Ae} + g^2_{Ve}) \\ A_{pol} = & \sigma_{pol} \, / \, \sigma_{TOT} & = & A_f \\ & = & 2 \, g_{Af} \, g_{Vf} \, / \, (g^2_{Af} + g^2_{Vf}) \\ A_{FB} = & \frac{3}{4} \, \sigma_{FB} \, / \, \sigma_{TOT} = & \frac{3}{4} \, A_e \, A_f \\ \end{array}$

 $\begin{cases} g_v = \sqrt{\rho} (I_3 - 2 Q \sin^2 \theta_W) \\ g_A = \sqrt{\rho} I_3 \end{cases}$

 $\sigma_{\text{LR}} \quad \text{difference between } \sigma \text{ for Left and Right} \\ \quad \text{handed incoming fermions}$

 $\sigma_{\text{pol}} \quad \text{difference between } \sigma \text{ for Left and Right} \\ \quad \text{handed outgoing fermions}$

 σ_{FB} difference between σ for outgoing fermions going Forward or Backward 30

Radiative corrections

Top evidence at RunII

Tevatron b-tagging

33

Mass distributions

A 22 GeV shower in SICAL that was giving Evis = 252 GeV is rejected by a better algorithm : $m_H = 112.8 \implies m_H = 114.4$

The Higgs per experiment

SM Higgs search at the LHC

No holes in m_H coverage !

Discovery happens early in the game (the plots are for 30/fb)

Constraining pdfs at the LHC

How? For an s-channel process (W, Z, W/ZW/Z, tt) $m^2 = sx_1x_2$ and $y = 1/2ln(x_1/x_2)$

$$\frac{dN_{X}}{dy} = \frac{d\sigma_{qq,gg \to X}}{dy} \bullet L \bullet pdf_{qq,gg}(x_{1}, x_{2}; Q^{2})$$

From the shape of y differential cross-sections we can constraint different pdfs (one can measure L•pdf)

 \Rightarrow Single W, Z, W/ZW/Z can bring info on regions of x close to tt production

(q-antiq x range between 3 10⁻⁴ and 0.1)

- ⇒ γ or Z+jet can help in the q-g case (g x range between 5 10⁻⁴ and 0.2) ($x_{b,c}$ range between 10⁻³ and 0.1)
- \Rightarrow W+jet can help for x_s

$$\Rightarrow d\sigma/dy(W)/d\sigma/dy(W) \approx d(x_1)/u(x_1)$$
 at large y

 \Rightarrow All the high Q² region is covered ! A few % on g and light quarks -syst. » stat. And 5-10% on s, c, b might be reached \Rightarrow x_{1/2}= e ^{±y} m/ \sqrt{s}

 χ^2 increase in global analysis as the W and H cross sections are varied at the LHC

Roberto Chierici To which extent can we extrapolate from q-q \leftrightarrow g-g? ₃₈

b fragmentation

CDF and D0 b-quark production data show an excess over NLO theory predictions by about a factor two or more pQCD

LHC parton kinematics

Expected statistics

The W mass

W-pair cross-section is too low Single W: no direct determination of m_w possible because of the missing neutrino, but huge statistics !

$$m_W^T = \sqrt{2 p_l^T p_v^T (1 - \cos \Delta \phi)}$$

 \Rightarrow <2MeV/y as a statistical uncertainty

After one year of LHC

_	Run IA		Uncortainties per experiment	
Source	$\Delta m_W^{}(\text{CDF})$	Δm_W (ATLAS)	per year and per lepton	
Statistics	145 MeV	< 2 MeV	The real improvement	
<i>E-p</i> scale	120 MeV	15 MeV		
Energy resolution	80 MeV	5 MeV		
Lepton identification	25 MeV	5 MeV	Internal calibration	
Recoil model	60 MeV	5 MeV	from Z data mainly.	
W width	20 MeV	7 MeV	Need excellent control of energy flow+ momentum scale	
Parton distribution	50 MeV	10 MeV /	3	
Tunctions				
Radiative decays	20 MeV	< 10 MeV		
p_{T}^{W}	45 MeV	5 MeV	15 MeV LHC combined will then	
Background	10 Me V	5 MeV	be reached still all is very challenging !!!	
TOTAL	230 MeV	25 MeV	43	

The top mass at LHC

LHC will be a top factory: O(10⁷) t-pair/y, con $\sigma_{NLO}(tt) \sim 830$ pb !! Golden channel: qqbblv (10⁵ events/y accounting for efficiencies already) b-jet The reconstruction starts with the W mass: different ways to pair the right jets to form the W jet energies calibrated using m_w reconstruction Important to tag the b-jets: Selection efficiency: ~5-10% with: enormously reduces background •p_T>20 GeV (physics and combinatorial) •E_T^{miss}>20 GeV clean up the reconstruction present offline estimates •4 jets with $p_T > 40 \text{ GeV}$ $\varepsilon_{\rm b} \approx 40\%$ for rejections $r_{\rm u,d} \approx 10^{-3}$, $r_{\rm c} \approx 10^{-2}$ >1 b-tagged jet Constrained fitting, statistical methods for Background: <2% reconstructing the t will be used

but it is not the statistical power that worries... **Roberto Chierici**

44

W/Z+jets, WW/ZZ/WZ

b-jet

trigger

Constraining the SM at the LHC

Not really much with $sin^2\theta_{eff}$ at the LHC, it seems...

45

Perspective at the LHC

