CORREZIONI DEBOLI AD OSSERVABILI ADRONICHE

EZIO MAINA UNIV. OF TORINO AND I.N.F.N. TORINO

IN COLLABORAZIONE CON

S. MORETTI, M. NOLTEN AND D.R. ROSS UNIV. OF SOUTHAMPTON

TORINO, IFAE 04, APRILE 2004

CORRECTIONS TO HADRONIC OBSERVABLES: QCD VS EW

- $\alpha_s \approx 10 \times \alpha_{EW}$
- NEW TYPES OF INITIAL STATE PARTON CAN LEAD TO LARGE ENHANCEMENTS
- LARGE SCALE DEPENDENCE OFTEN DOMINATES THEORETICAL UNCERTAINTIES

BUT

• There are large log around: at $\sqrt{s} = 1 \text{ TeV}$

$$\frac{\alpha}{4\pi s_{\rm w}^2} \log^2 \frac{s}{M_{\rm W}^2} = 6.6\%, \qquad \frac{\alpha}{4\pi s_{\rm w}^2} \log \frac{s}{M_{\rm W}^2} = 1.3\%$$

• NNLO QCD CORRECTIONS WILL SOON BE AVAILABLE $\alpha_s^2 \approx \alpha_{EW}$

SUDAKOV LOGS² IN A NUTSHELL

- CORRESPOND TO SOFT AND COLLINEAR SINGULARITIES IN THEORIES WITH MASSLESS BOSONS. THERE THEY ARE CANCELED BY REAL RADIATION
- REGULATED BY BOSON MASS IN EW. THEY ARE FINITE
- REAL EMISSION OF EW BOSONS IS ASSUMED TO BE NEGLIGIBLE
- IN THE FEYNMAN GAUGE THEY ARE ASSOCIATED WITH VIRTUAL GRAPHS WHERE SOFT-COLLINEAR BOSONS ARE EXCHANGED BETWEEN EXTERNAL LEGS (IN AXIAL GAUGE THEY ARE ASSOCIATED WITH SELF ENERGY GRAPHS ON EXTERNAL LEGS). EIKONAL APPROXIMATION.
- DL ARE UNIVERSAL: ONLY DEPEND ON EXTERNAL PARTICLES

$$= \sum_{k=1}^{n} \sum_{l < k} \sum_{V_a = A, Z, W^{\pm}} \alpha / 4\pi \log^2(r_{kl}/M^2) T_{kl}$$

$$\log^2 \frac{r_{kl}}{M^2} = \log^2 \frac{s}{M^2} + 2\log \frac{s}{M^2} \log \frac{r_{kl}}{s} + \log^2 \frac{r_{kl}}{s} \qquad r_{kl} = (p_k \pm p_l)^2$$

- NUMERICALLY AT TeV ENERGIES THERE ARE LARGE CANCELLATIONS BETWEEN DL AND SL CONTRIBUTIONS.
- DL DO NOT CANCEL IN INCLUSIVE MEASUREMENTS
- SL are not universal

CALCULATION

$$V(q_1) + q(p_1) \to V'(q_2) + q(p_2)$$

$$p_{1} = \frac{(s-Q^{2})}{2\sqrt{s}} (1, 0, 0, 1) \qquad q_{1} = \left(\frac{(s+Q^{2})}{2\sqrt{s}} 0, 0, -\frac{(s-Q^{2})}{2\sqrt{s}}\right)$$

$$p_{2} = \frac{\sqrt{s}}{2} (1, \sin\theta, 0, \cos\theta) \qquad q_{2} = \frac{\sqrt{s}}{2} (1, -\sin\theta, 0, -\cos\theta)$$

$$\epsilon_{2} = \left(0, \frac{\cos\theta}{\sqrt{2}}, -i\frac{\lambda_{2}}{\sqrt{2}}, -\frac{\sin\theta}{\sqrt{2}}\right)$$

FOR TRANSVERSE(LONGITUDINAL) INCOMING PHOTON/Z: $\epsilon_1^T = \left(0, \frac{1}{\sqrt{2}}, -i\frac{\lambda_1}{\sqrt{2}}, 0\right) \qquad \epsilon_1^{L\,\mu} = 2\frac{\sqrt{Q^2}}{(s-Q^2)}p_1^{\mu}$ THUS WE HAVE MADE THE GAUGE CHOICE: $p_1 \cdot \epsilon_1 = 0, \qquad p_2 \cdot \epsilon_2 = 0.$ DEFINE: $n = \sqrt{s} (0, 0, 1, 0)$ AND A VECTOR v, WHICH IS ORTHOGONAL TO p_1, p_2 AND n,

$$v^{\mu} = = \frac{1}{-u}p_1^{\mu} + \frac{1}{s}p_2^{\mu} - \frac{-t}{-us}q_2^{\mu}.$$

$$s = (p_1 + q_1)^2, \quad t = (p_2 - p_1)^2, \quad u = (q_2 - p_1)^2$$

- HELICITY AMPLITUDES: $\mathcal{A}_{\lambda_1,\lambda_2,\sigma}^{(G)} = \bar{u}(p_2)\Gamma \frac{(1+\sigma\gamma^5)}{2}u(p_1)$
- HELICITY IS CONSERVED:
 - FOR NEUTRAL BOSONS: NO MASSES
 - For W's and the corresponding Φ^{\pm} : only L states contribute
- Γ contains an odd number of $\gamma\text{-matrices}$
- FOR THE UV-FINITE TERMS THE CHRYSTOFFEL IDENTITIES LEAD TO: $\Gamma = C_1 \gamma \cdot p_1 + C_2 \gamma \cdot p_2 + C_3 \gamma \cdot q_2 + C_4 \sqrt{Q^2} \gamma \cdot n$ $q_2 = \text{GLUON}, \ n \cdot p_{1(2)} = 0, \ n \cdot q_2 = 0, \text{ and } Q^2 = q_1^2$

•
$$C_3 = \operatorname{Tr}\left(\Gamma\gamma \cdot v \frac{(1+\sigma\gamma^5)}{2}\right)$$
 WHERE $v^{\mu} = = \frac{1}{-u}p_1^{\mu} + \frac{1}{s}p_2^{\mu} - \frac{-t}{-us}q_2^{\mu}$
 $v \cdot p_1 = v \cdot p_2 = 0, \ v \cdot q_2 = 1$

•
$$C_4 = -\frac{1}{2\sqrt{Q^2}} \operatorname{Tr}\left(\Gamma\gamma \cdot n\frac{(1+\sigma\gamma^5)}{2}\right)$$

• STANDARD MATRIX ELEMENTS:

$$\bar{u}(p_2,\sigma)(\gamma \cdot q_2)u(p_1,\sigma) = \sqrt{-us}$$
$$\bar{u}(p_2,\sigma)(\gamma \cdot n)u(p_1,\sigma) = -i\sigma\sqrt{-ts}$$

- STANDARD PV REDUCTION WITH FORM (2WAYS)+CHECKED WITH FeynCalc
- FF FOR SCALAR INTEGRALS
- CHECKED $\epsilon(\gamma) \to p_{\gamma}$

LC GIGAZ $\sqrt{s} = M_Z$: R_3

FACTORIZABLE CORRECTIONS

[JHEP 04(2003)056]

$$R_3(y) = \frac{\sigma_3}{\sigma_0} = \left(\frac{\alpha_s}{2\pi}\right) A(y) + \left(\frac{\alpha_s}{2\pi}\right)^2 B(y) + \dots,$$
$$A(y) \to A(y) + A_W(y)$$

LC GIGAZ $\sqrt{s} = M_Z$: THRUST

FACTORIZABLE CORRECTIONS

EW CORRECTIONS $\times 100$

$$T = \max \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}_{T}|}{\sum_{i} |\vec{p}_{i}|}$$

LC GIGAZ $\sqrt{s} = M_Z$: $b\overline{b}g$ production

FACTORIZABLE CORRECTIONS

b-quarks only

LARGE CROSS SECTION PROCESS: AT LHC IN LO

 $\sigma_{\gamma+j}(p_T > 40 \,\text{GeV}) \approx 1.4 \times 10^7 \,fb, \,\sigma_{Z+j}(p_T > 40 \,\text{GeV}) \approx 4.9 \times 10^6 \,fb$

- Easily separated using $Z \rightarrow l^+ l^-, \ l = e, \mu$
- GIVES ACCES TO q AND g PDF'S
- Useful for absolute jet energy calibration

- $m_b = 0, \ m_t = 175 \, \text{GeV}$
- $M_Z = 91.19 \,\text{GeV}, \, M_W = 80.35 \,\text{GeV}$
- $\sin^2 \theta_W = 1 M_W^2 / M_Z^2$
- $\mu = M_Z$, $\alpha^{-1} = 128.07$
- PDF's: MRSTLO20001

TREE LEVEL

LHC: $pp \rightarrow \gamma^*, Z^* + j : QCD \ corrections$

- CAMPBELL, ELLIS, RAINWATER [HEP-PH/0308195]
- ARNOLD, ELLIS, RENO PRD40:912, 1989 ARNOLD, RENO NPB319:37, 1989
- GIELE, GLOVER, KOSOWER NPB403:633, 1993

 $\delta\sigma/\sigma \approx -1.2\%$ corresponds to 6-60 events

 $\delta\sigma/\sigma \approx -12\%$ corresponds to 240 events

bb production at hadron colliders

[HEP-PH/0307021]

TREE LEVEL

- b production has shown discrepancies with SM
- TEVATRON RUN 2 AND LHC WILL PROVIDE LARGER DATA SAMPLES AT LARGER $\sqrt{\hat{s}}$
- WEAK INTERACTIONS LEAD TO MEASURABLE ASYMMETRIES

TEVATRON: $p\overline{p} \rightarrow b\overline{b}$ $\sqrt{(s)} = 2 \,\text{TeV}$

TEVATRON: $p\overline{p} \rightarrow b\overline{b}$ FB ASYMMETRY $\sqrt{(s)} = 2 \text{ TeV}$

LHC:
$$pp \to b\overline{b} \quad \sqrt{(s)} = 14 \,\text{TeV}$$

WEAK CORRECTIONS ARE AVAILABLE FOR:

- $e^+e^- \rightarrow 3j$ at the Z pole
- $pp, p\overline{p} \rightarrow j + Z, \gamma$
- $pp, p\overline{p} \to b\overline{b}$

THEY ARE RELEVANT FOR:

- HIGH PRECISION MEASUREMENT: LC-GIGAZ
- High energy High p_T processes
- Asymmetry-like observables
- NEED TO BE COMBINED WITH QCD CORRECTIONS