Electroweak physics at LHC

Marina Cobal, University of Udine 'IFAE', Torino Apr 14 - Apr 16, 2004

Outline

Introduction

P 2

- W mass measurement
- Top mass measurement
- EW single top quark production: measurement of V_{tb}.
- A_{FB} asymmetry in dilepton production: sin²θ_{eff}^{lept}(M_Z²).
- Conclusion.

^{P3} LHC and experiments

No observable directly related to m_{H} . Dependence through radiative corrections.

By making precision measurements (already interesting per se):

- one can get information on the missing parameter m_H
- one can test the validity of the Standard Model

^{°°} Where we are

Uncertainties on m_t , m_W are the dominating ones in the ew fit

At the Tevatron run II: $\delta m_t \le 2.5 \text{ GeV}$; $\delta m_W \le 30 \text{ MeV} \Rightarrow \delta m_H/m_H \le 35\%$ What can we expect/should be our goal at LHC?

Ρ7

	√s [TeV]	Luminosity [cm ⁻² s ⁻¹]	∫L [fb⁻¹/y]
TeVatron	2	<10 ³²	0.3
LHC (low lum)	14	10 ³³	10
LHC (high lum)	14	10 ³⁴	100

process	σ(pb)	Events/s	Events/y
bb	5×10 ⁸	10 ⁶	10 ¹³
Z→ee	1.5×10 ³	~3	10 ⁷
W→ ℓ ∨ (ℓ=e ,µ)	3×10⁴	~60	108
WW→evX	6	10 ⁻²	10 ⁵
tt	830	~1.7	107
H(700 GeV/c ²)	1	2×10 ⁻³	104

σ (proton - proton)

M_w measurement at the LHC

year 2004: $\Delta M_W \approx 30 \text{ MeV}$, year 2007: $\Delta M_W < 30 \text{ MeV}$ (Lep2+Tevatron)

• m_{top} and M_W : equal weight in the EW fit if $\Delta M_W \approx 0.007 \Delta m_{top}$ at LHC: $\Delta m_{top} \le 2 \text{ GeV}$ gives the precision $\Delta M_W :\le 15 \text{ MeV}$

M_w measurement: Transverse Mass

 Use Transverse mass to cope with unmeasured P^L_v

P9

$$M_W^T = \sqrt{\frac{2p_T^l p_T^{\nu} (1 - \cos \Delta \phi^{l,\nu})}{P_T^{miss}}} \quad l = e, \mu$$

✓ W mass : fit exp. shape to MC sample with different Values of M_W

Profit from Tevatron experience:

Many potential hidden sources of systematics from the detector description in the simulations (+pile-up, + radiation)

 \Rightarrow use data samples for in-situ calibrations !

Advantages of the LHC:

Huge statistics of signal & control samples like Z leptonic decays:

⇒ Larger production cross-section for the control process $Z \rightarrow (e/\mu)(e/\mu)$ (6 millions/y/exp) ⇒ granularity + acceptance + resolution are better

Error from control samples at the LHC < than at the Tevatron

Detector systematics

0.02% on lepton E/p scale precision needed

⇒ Z→ee, Z→ $\mu\mu$ mass reconstruction ⇒ leptonic decays of Υ , J/ ψ ~15 MeV/y-e-I can be reached

... and ~1-2% uncertainty in E+p resolution

 \Rightarrow Z width reconstruction

low extrapolation error $Z \rightarrow W$

~5 MeV/y-e-I can be reached

Recoil modelling (UE + detector)

 \Rightarrow beam tests data

 \Rightarrow determine response/resolution of the recoil (+UE) from Z $\rightarrow \ell \ell$ data ~5 MeV/y-e-I can be reached

Physics systematics

Implicit SM assumption

From theory

$p_{T}(W)$

 \Rightarrow use $p_T(Z)$ from $Z \rightarrow \ell \ell$, use $p_T(W)/p_T(Z)$ to model MC.

~5 MeV/y-e-I can be reached

Uncertainties on the parton density functions

 \Rightarrow Compare different models, constrain pdfs through Z+W data

~10 MeV/y-e-I can be reached

W width

 $\Rightarrow \text{ use measurement of } R = \frac{\sigma_W}{\sigma_Z} \times \frac{BR(W \to \ell \nu)}{BR(Z \to \ell \ell)} \text{ to determine } \Gamma_W$ <10 MeV/y-e-l can be reached

Radiative decays

 \Rightarrow constrained through W $\rightarrow \ell v \gamma$?

<10 MeV/y-e-I, theory work needed

Background

 \Rightarrow checks on Z and W $\rightarrow \tau v$ (composition similar to Tevatron)

<5 MeV/y-e-I should be reached

^Mw measurement: errors

 \succ M_W, W \rightarrow Iv one lepton species low lum, per exp., per year

^{P14} M_{top} measurement: production

Cross section determined to NLO precision

- Total $\sigma_{NLO}(tt)$ = 834 ± 100 pb
- Largest uncertainty from scale variation
- Compare to other production processes:

Low lumi			
Process	N/s	N/year	Total collected before start LHC
$W \rightarrow ev$	15	10 ⁸	10 ⁴ LEP / 10 ⁷ FNAL
Z→ ee	1.5	10 ⁷	10 ⁷ LEP
tt	1	10 ⁷	10 ⁴ Tevatron
bb	10 ⁶	10 ¹²⁻¹³	10 ⁹ Belle/BaBar ?
H (130)	0.02	10 ⁵	?

LHC is a top factory!

 Top production cross section approximately 100x Tevatron

Golden channel

Clean trigger from isolated lepton

The reconstruction starts with the W mass:

- different ways to pair the right jets 0 to form the W
- jet energies calibrated using m_w
- Important to tag the b-jets:
 - enormously reduces background Ο (physics and combinatorial)
 - clean up the reconstruction

Background: <2% W/Z+jets, WW/ZZ/WZ P 16

Lepton + jet: reconstruct top

CMS

10fb -

400

m_{top}(GeV)

events/4GeV 8

200

100

٥ ٦

Phad (W_{lan}→τγ.) bac ka rou ne

ti→z°

1-7079

Antime

 $dd \rightarrow db(+d')$

100

200

Hadronic side

- W from jet pair with closest invariant mass to M_{W} 0
 - Require |M_W-M_{ii}|<20 GeV
- Assign a b-jet to the W to reconstruct M_{top} 0

Kinematic fit

- Using remaining I+b-jet, the leptonic part is Ο reconstructed
 - $|m_{ivb} < m_{iib} > | < 35 \text{ GeV}$
 - Kinematic fit to the tt hypothesis, using M_W constraints

M_{top} systematics

- Method works:
 - Linear with input M_{top}
 - Largely independent on Top P
- Biggest uncertainties:
 - Jet energy calibration
 - FSR: 'out of cone' give large variations in mass
 - B-fragmentation
- Verified with detailed detector simulation and realistic calibration

M ^{Rec} (GeV)	χ ² /ndf 6.011 / 8 P1 0.9994	M _{top} (GeV)	- - - -
) P _T		L	- - -
170		٢70	
160	160 170 180 190 M ^{Gen} (GeV)	160	E 0 100 200 300 400 Pt(top) (GeV)

Source of uncertainty	Hadronic δM _{top} (GeV)	Fitted δM _{top} (GeV)
Light jet scale	0.9	0.2
b-jet scale	0.7	0.7
b-quark fragm	0.1	0.1
ISR	0.1	0.1
FSR	1.9	0.5
Comb bkg	0.4	0.1
Total	2.3	0.9

Select high P_T back-to-back top events:

- Hemisphere separation (bckgnd reduction, much less combinatorial)
- Higher probability for jet overlapping
- Use the events where both W's decay leptonically (Br~5%)
 - Much cleaner environment
 - $\circ~$ Less information available from two v's
- Use events where both W's decay hadronically (Br~45%)
 - Difficult 'jet' environment
 - o Select P_T>200 GeV

P 18

Events/ 5 GeV

 $\mathbf{M}_{top} \text{ from } \mathbf{J}/\psi$

• Use exclusive b-decays with high mass products (J/ψ)

- Higher correlation with M_{top}
- Clean reconstruction (background free)
- BR(tt→qqb ℓ v+J/ψ→ ℓ ℓ) ≈ 5 10⁻⁵
- \circ ε ~ 30% ⇒ 10³ ev./100 fb-1 (need high lumi)

Different systematics (almost no sensitivity to FSR)

Uncertainty on the bquark fragmentation function becomes the dominant error P 20

Commissioning the detectors

- Determination M_{Top} in initial phase
 - Use 'Golden plated' lepton+jet

Period	Stat δM_{top} (GeV)	Stat δσ/σ
1 year	0.1	0.2%
1 month	0.2	0.4%
1 week	0.4	2.5%

- Selection:
 - Isolated lepton with $P_T > 20 \text{ GeV}$
 - Exactly 4 jets ($\Delta R=0.4$) with $P_T>40 \text{ GeV}$
- Reconstruction:
 - $\circ~$ Select 3 jets with maximal resulting P_{T}

Calibrating detector in comissioning phase

Assume pessimistic scenario:

- -) No b-tagging
- -) No jet calibration
- -) But: Good lepton identification

- Signal can be improved by kinematic constrained fit
 - Assuming $M_{W_1}=M_{W_2}$ and $M_{T_1}=M_{T_2}$

Commissioning the detectors

Most important background for top: W+4 jets

- Leptonic decay of W, with 4 extra 'light' jets
 - Alpgen, Monte Carlo has 'hard' matrix element for 4 extra jets (not available in Pythia/Herwig)
- Signal plus background at initial phase of LHC

ALPGEN:

W+4 extra light jets Jet: P_T >10, $|\eta|$ <2.5, ΔR >0.4 No lepton cuts Effective σ : ~2400 pb

With extreme simple selection and reconstruction the toppeak should be visible at LHC

measure top mass (to 5-7 GeV) \rightarrow give feedback on detector performance

^{P 22} Single top production

Three production mechanisms:

Determination of V_{tb}
Independent mass measurement

Wg fusion: 245±27 pb S.Willenbrock *et al.*, Phys.Rev.D56, 5919

Wt: 62.2^{+16.6}_{-3.7} pb A.Belyaev, E.Boos, Phys.Rev.D63, 034012

W* 10.2±0.7 pb M.Smith *et al.*, Phys.Rev.D54, 6696

Main Back	ground [σxBR(W→ℓ _V), {=e,µ]:	
o tt	σ=833 pb	[246 pb]	Wg	[54.2 pb
o Wbb	σ=300 pb	[66.7 pb]	Wt	[17.8 pb
o Wjj	σ=18·10³ pb	[4·10 ³ pb]	W*	[2.2 pb]

P 23

Single top results

- Detector performance critical to observe signal
 - Fake lepton rate
 - o b and fake rate id ϵ
 - Reconstruction and vetoing of low energy jets
 - Identification of forward jets
- Each of the processes have different systematic errors for V_{tb} and are sensitive to different new physics
 - heavy W' \Rightarrow increase in the s-channel W*
 - $\circ \ \ \mbox{FCNC gu} \rightarrow t \ \Rightarrow \mbox{increase in} \\ \mbox{the W-gluon fusion channel}$

Signal unambiguous, after 30 fb⁻¹:

Process	Signal	Bckgnd	S/B
Wg fusion	27k	8.5k	3.1
Wt	6.8k	30k	0.22
W*	1.1k	2.4k	0.46

Complementary methods to extract V_{tb}

Process	δV _{tb} (stat)	δV _{tb} (theory)
Wg fusion	0.4%	6%
Wt	1.4%	6%
W*	2.7%	5%

 With 30 fb⁻¹ of data, V_{tb} can be determined to %-level or better (experimentally)

Dreil- Y an production at the LHC

Goals:

- Measure pdf
- Determine parton lumi
- Measure $\sin^2 \theta_W$

$\sin^2 \theta_{eff}$ measurement

- $sin^2\theta_{eff}^{lept}$ is one of the fundamental parameters of the SM!
- precise determination will constrain the Higgs mass and check consistency of the SM.
- \succ From A_{FB} in p-p→Z,γ* → I⁺ I⁻

at the Z pole, A_{FB} comes from interference of the V and A components of the couplings $A_{FB} = b \{ a - sin^2 \theta_{eff}^{lept}(M_Z^2) \}$ [hep/ph9707301] a and b calculated to NLO in

✓ At pp_collider, forward direction not naturally defined BUT

QED and QCD.

- *q* Always from sea \rightarrow softer: direction given by the sign of y(II)
- Asymmetry increase with y(II)

P 26

$sin^2 \theta^{I}_{eff}$ measurement

To reach World Average precision, need to use full calorimeter coverage (e channel only)

- $\label{eq:constraint} \ Z \rightarrow \mu^+ \ \mu^- \quad |\eta|{<}2.$
- $Z \rightarrow e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} ~~ |\eta|{<}2.5~$ jet rejection factor 1000
- $Z \rightarrow e^+ \: e^- \:$ 2.5< $\! |\eta| \! < \! 5 \:$ jet rejection factor 10 100

σ (Z \rightarrow / +/ -) ~ 1.5 nb (for either e or $\mu)$

y cuts – e⁺e⁻	$\Delta \mathbf{A}_{FB}$	$\Delta sin^2 \theta_{eff}^{lept}$
(y(Z) > 1)	(statistical)	(statistical)
y (<i>l</i> _{1,2}) < 2.5	3.03 x 10 ⁻⁴	4.0 x 10 ⁻⁴
y (<i>l</i> ₁) < 2.5; y (<i>l</i> ₂) < 4.9	2.29 x 10 ⁻⁴	1.41 x 10 ⁻⁴
	[L = 100 fb ⁻¹

• Main sys. effect: **uncertainty on pdf**, lepton acceptance (~0.1%), radiative correction

Can be further improved: **combine channels/experiments**.

P 27

Conclusions:

- LHC will allow precision measurements: unexplored kinematic regions, high-statistics (W, Z, b, t factory);
- M_w can be measured with a precision of 15 MeV (combining e/μ and ATLAS + CMS);
- M_{top} : ~ 1 GeV (combined with Δm_W ~15 MeV, constrains M_H to ~ 25%);
- EW single top production: direct measurement of V_{tb}; measurement of top polarization (Wg with statistical precision of ~ 1.6%);
- sin²θ_{eff} lept (M_Z²) can be determined with statistical precision of 1.4x10⁻⁴ (competitive to lepton collider measurements!)