

Recent results from KLOE at DAΦNE

Barbara Sciascia INFN Laboratori Nazionali di Frascati representing the KLOE Collaboration

IFAE 2004 – Torino

<u>Kaon physics</u>

- CP: double ratio/interferometry
- CPT tests: semileptonic K_S, K_L charge asymmetries
- V_{us} : kaon form factors from semileptonic $K_{S,L}$, K^{\pm} decays
- Rare $K_{S,L}$ decays: $K_S \rightarrow 3\pi^0$, $\pi^+\pi^-\pi^0$, $K_L \rightarrow \gamma\gamma$

Non Kaon Physics

- radiative ϕ decays (scalars, pseudoscalars + photon)
- $\rho\pi$ final states
- rare η decays
- hadronic cross section: see D.Leone talk

B.Sciascia IFAE 2004 – Torino

2

First

results

published

2000: 25 pb⁻¹ 80•10⁶ φ decays

2001: 176 pb⁻¹ 550 •10⁶ φ decays **2002: 296 pb⁻¹** 920 •10⁶ φ decays

Analysis in

progress

Goal for 2004-5: L > 1 fb⁻¹

- New interaction region
- Injection efficiency improved
- Wiggler magnets modified

The KLOE detector

Al-Be beam pipe (spherical, 10 cm Ø, 0.5 mm thick)
Instrumented permanent magnet quadrupoles (32 PMT's)

• Drift chamber

- Gas mixture: 90% He + 10% C_4H_{10}
- 4 m \emptyset × 3.75 m, CF frame
- 12582 stereo-stereo sense wires
- almost squared cells

• Electromagnetic calorimeter

- lead/scintillating fibers (1 mm \emptyset), 15 X₀
- 4880 PMT's
- 98% solid angle coverage

• **Superconducting coil** (B = 0.52 T)

Detector performance

 $\sigma_{\rm E}/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma_{\rm t} = 54 \text{ ps} / \sqrt{E(GeV)} \oplus 50 \text{ ps}$ $\sigma_{\rm vtx}(\gamma\gamma) \sim 1.5 \text{ cm} (\pi^0 \text{ from } K_{\rm L} \rightarrow \pi^+\pi^-\pi^0)$

 $K_S, K^+ \longleftarrow \phi \longrightarrow K_L, K^-$

 $\frac{1}{\sqrt{2}} \left(\left| K_L, \mathbf{p} \right\rangle \right| K_S, -\mathbf{p} \rangle - \left| K_L, -\mathbf{p} \right\rangle \left| K_S, \mathbf{p} \rangle \right)$

Production:

 $K_S K_L (K^+K^-)$ produced in pure $J^{PC} = 1^-$ state: **Observation of** $K_{S,L}$ **signals presence of** $K_{L,S}$ Allows precision measurement of absolute BR's Allows interference measurements of $K_S K_L$ system

Properties:

 $\lambda_{s} = 6 \text{ mm: } K_{s} \text{ decays near interaction point}$ $\lambda_{L} = 3.4 \text{ m: Appreciable acceptance for } K_{L} (\sim 0.5 \lambda_{L})$ $N_{sL} \sim 10^{6} / \text{pb}^{-1}; \text{ p*} = 110 \text{ MeV/c}$ $\lambda_{\pm} = 0.9 \text{ m: } 60\% \text{ acceptance for kaon tracking}$ $N_{\pm} \sim 1.5 \times 10^{6} / \text{pb}^{-1}; \text{ p*} = 127 \text{ MeV/c}$

Tagging of K_S and K_L "beams"

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 1 MeV

 K_S tagged by K_L interaction in EmCEfficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 1 MeV

$K_S \to \pi^0 \pi^0 \pi^0 - Test \ of \ CP \ and \ CPT$

- Observation of $K_S \rightarrow 3\pi^0$ signals CP violation in mixing and/or in decay: SM prediction: $\Gamma_S = \Gamma_L |\epsilon|^2$, giving $BR(K_S \rightarrow 3\pi^0) = 1.9 \ 10^{-9}$ Present published results: $BR(K_S \rightarrow 3\pi^0) < 1.4 \ 10^{-5} \ (90\% \text{ CL})$
- Uncertainty on $K_S \rightarrow 3\pi^0$ amplitude limits precision of CPT test: from unitarity:

$$(1 + i \tan \phi_{SW}) \text{Re } \epsilon - \Sigma_f A^* (K_S \rightarrow f) A(K_L \rightarrow f) / \Gamma_S = (-i + \tan \phi_{SW}) \text{Im } \delta$$
$$(\epsilon_{S,L} = \epsilon \pm \delta)$$

• A limit on BR(K_S $\rightarrow 3\pi^0$) at 10⁻⁷ level translates into a 2.5-fold improvement on the accuracy of Im δ (5×10⁻⁵ \rightarrow 2×10⁻⁵), *i.e.*

$$\frac{\delta(M_{K0} - M_{\overline{K}0})}{M_{K}} \sim 5 \ 10^{-19}$$
($\Gamma_{K0} = \Gamma_{\overline{K0}}$ assumed)

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0 - 2\pi^0 vs 3\pi^0$

To reject background compare $3\pi vs 2\pi$ hypotheses :

 $\chi^2_{3\pi}$ – pairing of 6 γ clusters with best π^0 mass estimates $\chi^2_{2\pi}$ – best pairing of 4 γ 's out of 6: π^0 masses, E(K_S), P(K_S), c.m. angle between π^0 's

Definition of the signal box obtained from analysis of 6-pb⁻¹-equivalent MC subsample

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$ - sidebands

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0 - signal region$

$K_{S} \rightarrow \pi^{0} \pi^{0} \pi^{0} - Preliminary results$ $N_{sel}(data) = 4 \text{ events selected as signal, with efficiency } \epsilon_{3\pi} = 23\%$ $N_{sel}(bkg) = 3\pm 1.3 \pm 0.2 \text{ bkg events expected from MC, use } N_{sel}(bkg) = 1.6$

Can state:
$$N_{3\pi} < 5.83$$
 with a 90% CL

Normalize signal counts to $K_S \rightarrow \pi^0 \pi^0$ count in the same data set:

$$BR(K_{S} \to \pi^{0} \pi^{0} \pi^{0}) = \frac{N_{3\pi} / \varepsilon_{3\pi}}{N_{2\pi} / \varepsilon_{2\pi}} BR(K_{S} \to \pi^{0} \pi^{0}) < 2.1 \ 10^{-7},$$

Which translates into a limit on
$$|\eta_{000}| = \left| \frac{A(K_S \rightarrow \pi^0 \pi^0 \pi^0)}{A(K_L \rightarrow \pi^0 \pi^0 \pi^0)} \right| < 2.4 \ 10^{-2}$$

$K_S \to \pi e v \, decays - Physics \, issues$

Sensitivity to CPT violating effects through charge asymmetry:

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})}$$

If CPT holds, A_S=A_L

 $A_S \neq A_L$ signals CPT violation in mixing and/or decay with $\Delta S \neq \Delta Q$

Sensitivity to CP violation in $K^0-\overline{K}^0$ mixing: A_S = 2Re ε (CPT symmetry assumed)

A_S never measured before

Can extract $|V_{us}|$ via measurement of BR(K_S $\rightarrow \pi e\nu$)

$K_S \rightarrow \pi e \nu decay - Analysis outline$ K_{crash} tag + 2 tracks from IP with $M_{\pi\pi} < 490$ MeV (reject $K_S \rightarrow \pi \pi(\gamma)$) **TOF identification:** compare π -e expected flight times, reject $\pi\pi,\pi\mu$ bkg $d\delta_{t,\pi e} = \delta t(m_{\pi}) - \delta t(m_{e}) \qquad (\delta t(m) = t_{cluster} - t.o.f.)$ MC $\pi e v$ Data $d\delta_{t, \pi e}(ns)$ 5 5 4 3 3 2 2 0 0 $d\delta_{t.e\pi}(ns)$ 3

 $K_S \rightarrow \pi e \nu \, decay - Events \, counting$

$K_S \rightarrow \pi e \nu \, decay - Events \, counting$

Signal spectrum sensitive to the presence of a photon in the final state

Include radiative effects through an IR-finite treatment in MC (no energy cutoff)

Normalize signal counts to $K_S \rightarrow \pi \pi(\gamma)$ counts in the same data set (use PDG03 ⁴ for BR($K_S \rightarrow \pi \pi(\gamma)$), dominated by KLOE measurement)

 $K_{\rm S} \rightarrow \pi e \nu \, decay - BR \, and \, A_{\rm S}$

Selection efficiency (given the tag) is evaluated by charge, using data control sample of $K_L \rightarrow \pi ev$ decaying close to IP: $\epsilon (\pi^-e^+) = (24.1 \pm 0.1 \pm 0.2)\%$; $\epsilon (\pi^+e^-) = (23.6 \pm 0.1 \pm 0.2)\%$

BR(K_S
$$\rightarrow \pi^- e^+ v) = (3.54 \pm 0.05_{stat} \pm 0.05_{syst}) 10^{-4}$$

BR(K_S $\rightarrow \pi^+ e^- v) = (3.54 \pm 0.05_{stat} \pm 0.04_{syst}) 10^{-4}$
BR(K_S $\rightarrow \pi e v) = (7.09 \pm 0.07_{stat} \pm 0.08_{syst}) 10^{-4}$
(Published result: $(6.91 \pm 0.34_{stat} \pm 0.15_{syst}) 10^{-4}$, Phys.Lett.B535:37-42,2002)
 $A_S^e = (-2 \pm 9_{stat} \pm 6_{syst}) 10^{-3}$ (never measured before)
(A_L = (3.322 \pm 0.058 \pm 0.047) 10^{-3}, KTeV 2002)
future:

2004-5 run: 2 fb⁻¹ $\rightarrow \sigma(A_S^e) \sim 3 \times 10^{-3}$ **CPT test:** 20 fb⁻¹ needed to reach $\sigma(\text{Re}\delta_K) = \frac{1}{4} \sigma(A_S^e) = 3 \times 10^{-4}$

19

Most precise test of unitarity possible at present comes from 1st row:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$

Can test if $\Delta = 0$ at few 10⁻³: PDG02 $\Delta = 0.0042 \pm 0.0019$ from super-allowed 0⁺ \rightarrow 0⁺ Fermi transitions, n β -decays: $2|V_{ud}|\delta V_{ud} = 0.0015$ from semileptonic kaon decays (PDG 2002 fit): $2|V_{us}|\delta V_{us} = 0.0011$

To extract $|V_{us}|$ from K^0_{e3} decays, have to include EM effects: $\Gamma(K^0 \to \pi e \nu(\gamma)) \propto |V_{us} f_+^{K0\pi}(0)|^2 I(\lambda_t) (1 + \Delta I(\lambda_t, \alpha)) (1 + \delta_{EM})$

Fractional contributions to the uncertainty:

$$\frac{\delta |V_{us}|}{|V_{us}|} = 0.5 \frac{\delta \Gamma}{\Gamma} \oplus 0.05 \frac{\delta \lambda_{t}}{\lambda_{t}} \oplus \frac{\delta f_{+}^{K0\pi}(0)}{f_{+}^{K0\pi}(0)}$$
$$0.5\% \oplus 0.3\% \oplus 1\%$$

 $K_{S} \rightarrow \pi e \nu decay - V_{\mu S} f_{+}^{\kappa \pi}(0)$

Our <u>preliminary</u> result agrees better with latest K^+ data, while showing a appreciable deviation from old K^0_{e3}

A recent determination of $f_+(0)$ (**Cirigliano et al. hep-ph 0401173**) differs by +2%; the same authors suggest to use experimental ratio $\Gamma(K^0_{e3})/\Gamma(K^+_{e3})$ to improve the theoretical estimate of $f_+^{K\pi}$

Knowledge of 4 main K_L BR's at present dominated by 3 measurements:

 $\frac{\Gamma(K_{L} \to \pi^{0} \pi^{0} \pi^{0})}{\Gamma(K_{L} \to \pi e \nu)} \text{ and } \frac{\Gamma(K_{L} \to \pi^{0} \pi^{0} \pi^{0})}{\Gamma(K_{L} \to \pi^{+} \pi^{-} \pi^{0})}, \text{ with ~2\% relative uncertainty [NA31]}$ $R_{\mu/e} = \frac{\Gamma(K_L \to \pi \mu \nu)}{\Gamma(K_L \to \pi e \nu)} = 0.702 \pm 0.011 \text{ [Argonne HBC 1980]}$ 3- σ discrepancy (~4%) between measurement and expectation for $R_{\mu/e}$: $R_{\mu/e} = 0.671 \pm 0.002$, direct measurement for K⁺, from KEK-E246 2001 $R_{u/e}$ calculable from the slopes $\lambda_{\!_{+}}$ and λ_{0} of vector and scalar form factors: 0.670 ± 0.002 , if $\lambda_0 = 0.0183 \pm 0.0013$, from ISTRA+ 2003 0.668 ± 0.006 , if $\lambda_0 = 0.017 \pm 0.004$, from one-loop χ Pt

South Kole

 K_L decays – Status and objectives

Have to precisely measure **absolute** branching ratios, with rel. accuracy < 1%

Charged kaons – Tagging

Measurement of absolute BR's: K⁺ beam tagged from K⁻ $\rightarrow \pi^{-}\pi^{0}$, $\mu^{-}\nu$

Charged kaons – K^{\pm}_{l3} decays

After tag a dedicated reconstruction of K^{\pm} tracks is performed, correcting for charged kaon dE/dx in the DC walls

Outlook

Present status - K_S:

Sensitivity to BR's at the 10⁻⁷ level (preliminary UL for $K_S \rightarrow 3\pi^0$)

Measurement of K_{e3} mode at the % level, 10⁻² accuracy on A_S

- Expect 2 fb⁻¹ of integrated luminosity in 2004-5, would allow: A_S with a total accuracy of 4 10⁻³, first test of SM prediction $A_S = 2$ Re ϵ Sensitivity to $K_S \rightarrow 3\pi^0$ at 10⁻⁸ level
 - A measurement of BR(K_S $\rightarrow \pi^+\pi^-\pi^0$) with 20% relative uncertainty
 - First **direct** measurement
 - Test of the χPt prediction, BR(K_S $\rightarrow \pi^+\pi^-\pi^0) = (2.4 \pm 0.7) \ 10^{-7}$

In progress:

Measurement of BR's for semileptonic K_L and K^+ decays

- Huge statistics, uncertainty will be limited by systematics
- Will clarify the situation concerning the experimental parameters for the determination of V_{us}