Risultati recenti e prospettive di fisica al Tevatron Collider

Giorgio Chiarelli Istituto Nazionale di Fisica Nucleare Sezione di Pisa

Giorgio Chiarelli, INFN Pisa

Outline of this talk

Tevatron status and near (2005) future

Surrent performances and future improvements **DO and CDF**:

Sanalysis

⇒selected topics (mostly 200 pb⁻¹)

→Details are given in parallel sessions (Monica, Simona, Antonio, Carmine, Giovanni, Mapo, Mario, Tommaso)

Future perspectives (Higgs?) Personal remarks

Tevatron-Introduction

The Tevatron collider is an ensemble of accelerators.

"Run II is not a construction project. Run II is a complex campaign of operations, maintenance, upgrades, R& D and studies." (D.Lehman)

⇔Luminosity goal:

⇒4.4-8.5 fb⁻¹ by FY 2009

→More later

 $Record: 6.8 \times 10^{31} cm^{-2} s^{-1}$

Giorgio Chiarelli, INFN Pisa

Two detectors

CDF underwent serious upgrades:

- Shew tracking system
 ⇒COT, new silicon
 tracker (6-7 layers
 DS+1 SS)
- New forward calorimetry
 Tracking at trigger level
 Tracks at L1

\Rightarrow Displaced from PV@L2

Giorgio Chiarelli, INFN Pisa

DO: change of philosophy

- New tracking system
 - ⇒Based on a 2T solenoid
 - ⇒New 8 layers (fiber) tracker
 - ⇒Secondary vertices capability (SVX)
- Improved muon coverage
- New features at trigger level

B Physics at an Hadron Collider

Thought to be almost impossible

Sexploits large cross section

⇒Need tight selection at trigger level

⇒Tracking capability at L1 and displaced track trigger at L2 at CDF

 \rightarrow DO is commissioning its trigger.

⇒Challenge at high luminosity

By the way...

Charm physics came (almost) for free (i.e. w/o white/yellow books...)

High P_T Physics

Need to define a clear set of physics objects

- ♥ Jets
- ♥ High pt charged lepton
- $\stackrel{_{\scriptstyle \bigtriangledown}}{_{\scriptstyle \bigtriangledown}}$ neutrinos
- ♦ B tagged jets

⇒Displaced tracks ⇒Soft lepton id jet jet Proton Antiproton

High mass objects (top, Higgs, New particles) decays into jets, leptons (charged and neutral)

Challenge: reconstruct initial partons from a complicated final state

QCD Physics

Basics for any possible analysis:

 \clubsuit Jets carry information about QCD, PDF, couplings

⇒Et and angular distributions, fragmentation

⇒Comparison to pQCD predictions

 $\$ Measuring jets means understand calorimetry and tracking

♦ Can be tools (or background) in many physics topics

Results:

- Inclusive jet cross section (inherited discrepancy with pQCD
 from Run I)
- ♦ Dijet mass x-section
- \Leftrightarrow W+jets production
- Subderlying events

Future: new cone algorithms (k_T , midpoint)

Understanding background, MC checks and tuning... bread and butter for any search:

D0 measures the HF
 fraction associated to Z
 production for jets with
 E_T>20 and |η|<2.5

⇒Ratio σ(Z+b)/σ(Z+jet)= 0.024±0.007(stat+sys)

🗞 Theory:

⇒R~0.02 (Campbell, Ellis, Maltoni, Willenbrock)

Giorgio Chiarelli, INFN Pisa

yy production

Giorgio Chiarelli, INFN Pisa

^{,2} < 0.9

10[°]

 $> 14 \text{ GeV}, E_{T}^{2} > 13 \text{ GeV}$

m_w (GeV/c²)

IFAE, Torino 16 aprile 2004

CDF II Data (207 pb⁻¹)

• DIPHOX CTEQ5M $\mu_{E} = \mu_{B} = m_{\chi}/2$

ResBos CTEQ5M $\mu_{\text{F}} = \mu_{\text{B}} = m_{\nu}$

q_T (GeV/c)

EWK Physics

Basics for top, searches

Decay, associated production
 Often background for rare processes
 Discrepancy from SM would signal new physics
 Both CDF and DO measure
 Inclusive production cross section

 \mathbb{V} Multiboson production (W γ ,Z γ ,WZ,WW,ZZ)

⇒W mass: work in progress

W and Z at CDF and DO...

CDF extends its acceptance at $|\eta|>1$:

DO exploits its improved muon spectrometer:

EWK couplings

CDF measures the ratio of couplings in W to μ and W to τ channel wrt e channel:

$$U = \frac{R_{\mu}}{R_e} = \frac{\Gamma(W \to \mu \nu)}{\Gamma(W \to e \nu)} = \frac{g_{W\mu}^2}{g_{We}^2}$$

 g_{μ}/g_{e} CDF measurement World Average

1.011±0.018 0.993±0.025

$$U = \frac{R_{\tau}}{R_e} = \frac{\Gamma(W \to \tau \nu)}{\Gamma(W \to e \nu)} = \frac{g_{W_{\tau}}^2}{g_{W_{e}}^2}$$

 g_{τ}/g_{e} CDF measurement

0.99±0.04±0.07

Giorgio Chiarelli, INFN Pisa

Diboson Production

Zγ CDF Run 2 Preliminary 202/pb CDF Run 2 Preliminary 202/pb 69 candidates 69 candidates N_{events}/7GeV 30 N_{events}/0 γMC+BG $Z\gamma \rightarrow II\gamma MC + BG$ 10 25 $\mathsf{Jet} \to \gamma \; \mathsf{BG}$ ⇒γBG 15 10 -5 10 10 20 30 photon E_⊤ (GeV) 1 1.5 2 0.5 40 $\stackrel{25}{\Delta}$ R(near 35 $\sigma = 5.3 \pm 0.6(stat) \pm 0.4(sys) \pm 0.3(lum) pb$

Theory: 5.4±0.4

Ready for $W\gamma$, $Z\gamma$ radiation zero

WW:

CDF uses two selection:

17 evts, Backg:4.8

39 evts, Backg:15.27

Giorgio Chiarelli, INFN Pisa

10 years of top

 \rightarrow Lots of decay channels to look at

Giorgio Chiarelli, INFN Pisa

Top - x-section

A number of channels explored by D0

Nice comparison with past and theory...

Giorgio Chiarelli, INFN Pisa

Top Mass- Run II

Use knowledge to improve measurement

& Unconstrained kinematics Dilepton: 125 pb ⁻¹

175±17(stat) ± 8(syst)GeV/c²

In 162 pb⁻¹ of single tagged l+jets (22 evts)

♦ Dynamic Likelihood Method

New Physics ?

Higgs

Search in WH, H \rightarrow bbar

Search for H++

High mass

Solution Spin 2 particles

SUSY

Search for gluino decaying to sbottom

LQ

 \clubsuit First generation

 \clubsuit Second generation

...(excited leptons, ED...)

Search for High mass states Many theoretical possibilities (Z',Z in Little Higgs, RS gravitons, RPV sneutrinos...) From an experimental point of view, two possibilities:

Search for excess in di-electron (muon) events
→Opposite sign
→High P_T lepton
→At least one in central region

Giorgio Chiarelli, INFN Pisa

"Z" Different acceptance correction if you look for

Spin 1 (Z-like particles)
Spin 0 (Higgs-like particles)
Spin 2 (graviton-like particles)

Giorgio Chiarelli, INFN Pisa

IFAE, Torino 16 aprile 2004

CDF Run II Preliminary (200 pb⁻¹)

Data Drell - Yan

 10^{4}

Giorgio Uniareui, INFIN Pisa

Future Machine is performing... in the future: \odot CDF &DO, designed for 132 ns \Rightarrow will have to work at 396 and ~2.7x10³² cm⁻²s⁻¹ 10 Design Base 9 Fiscal 8 (fb^{-1}) (fb^{-1}) Year Integrated Luminosity (fb⁻¹) **Design Projection** 033 FY03 0.33 FY04 0.56 0 64 5 FY05 1.2 0.93 **Base Projection** 4 27 FY06 14 3 **FY07** 44 2.2 2 **FY08** 6.4 3.3 1 **FY09** 8.5 4.4 0 9/29/03 9/29/04 9/30/05 10/1/06 10/2/07 10/2/08 10/3/09 Start of Fiscal Year

Giorgio Chiarelli, INFN Pisa

Machine R&D

A number of technical challenges..

Giorgio Chiarelli, INFN Pisa

Conclusion I

CDF and DO are taking (and analyzing) data

- Stevatron is performing well
- Both experiments are coping well with current instantaneous luminosity
- SCDF is experiencing some problems with COT unexpected aging (<u>http://www-cdf.fnal.gov/upgrades/cot/aging_committee.html</u>)

Tevatron is undergoing a complex process towards higher luminosity

© Goal is to collect between 2 and 4 fb⁻¹ by mid 2007 Detectors should be able to survive the challenge

Conclusion II

Physics results do not come in batches... © Continuos flow of results from both CDF and DO Basic physics objects understood ⇒Learning curve was slow ⇒Most results are still "basics" (EWK and top xsections) →Follow analysis "a la Run I" ⇒Already some results based on new techniques/detectors \rightarrow More on its way, stay tuned (M_w in summer with 200 pb⁻¹, Mtop...) ⇒Impact on Higgs searches (if luminosity projections hold)

