Charm physics at the Tevatron Run II

Mario Campanelli DPNC Université de Genève

Introduction: why?

CDF and D0 are known in the physics community for having discovered the top quark, and running at the world's largest energy accelerator
 Does it make sense to study low-energy

events, a field dominated by dedicated experiments (b factories, FOCUS, CLEO III)?

Introduction: why c physics at Tevatron

Extremely high cross section
 σ(bb): TeV ≈ 50 µb, cc ×10
 Υ(4S) ≈ 1 nb, Z0 ≈ 7 nb
 Relatively "clean" events

But: •Luminosity 1000x less than bfactories •Non optimal calorimetry-PID •Large combinatorics

Outline

The accelerator CDF II Triggering on charm Basic properties Spectroscopy New physics

The accelerator

The Tevatron is the largest-energy accelerator ever built. It serves two collider experiments (CDF and D0), plus several fixed targets (KTeV, NuTeV, DoNuT etc.) From 2001 it started phase 2 to increase collider luminosity

The progress of Tevatron luminosity

First Tevatron goals (2x10³², for an integrated luminosity of 2 fb⁻¹ over a 2-3 year period and 15 fb⁻¹ before LHC) had to be revised. Now the accelerator is much better understood, performances exceed (revised) expectations, keeps improving

Detector hardware upgrades for Run II

Both detectors underwent major upgrades for RunII, involving full DAQ system and tracking (all relevant to low-Pt physics) to cope with increased event rate. D0 added solenoid in tracking region.

Trigger issues

1.7 MHz events in central region Only 70 Hz can be stored on tape

Process	Cross-	Event Rate
	section	
Inelastic pp	60 mb	6 MHz
pp →bb (b p_T >6 GeV, η <1)	10 µb	1 kHz
pp→WX→ℓvX	5 nb	0.4 Hz
$pp \rightarrow ZX \rightarrow \ell \ell X$	0.5 nb	0.04 Hz
$pp \rightarrow tt \rightarrow WWbb \rightarrow \ell \nu$	2 pb	0.0002 Hz
bbX		
$pp \longrightarrow WH \longrightarrow \ell \nu bb$ (M _H =120GeV)	15 fb	15 10-7 Hz

Assume L =100x10³⁰ cm⁻²s⁻¹, *ℓ*=electron or muon

Strategies to trigger on Heavy Flavors

Di-lepton - dilepton sample

Traditional

(CDF, D0)

- pT(µ/e)>1.5/4.0 GeV/c
 J/ψ modes, masses, lifetime, x-section
 Yield 2x Run I (low Pt threshold, increased acceptance)
 lepton + displaced track semileptonic sample
 pT(e/µ)>4 GeV/c 120 µm<d0(Trk)<1mm, pT(Trk)>2 GeV/c
 Semileptonic decays (B---8vX), Lifetimes, flavor tagging.
 B Yields 3x Run I
 Two displaced vertex tracks hadronic sample
 - pT(Trk)>2 GeV/c, 120 μm<d0(Trk)<1mm, S pT>5.5 GeV/c
 - Fully hadronic B decays ($B \rightarrow hh'$, $Bs \rightarrow Ds\pi$, $D \rightarrow K\pi$...)
 - Branching ratios, Bs mixing, ...

CDF track trigger Exploit long b, c lifetimes in Trigger L1 track + Si hits = Impact parameter @L2 A first at a hadron collider CDF is a charm/Factory!

XFT (Level 1) measures curvature for tracks with Pt>1.5 GeV with $\sigma(pT)=(1.74 pT)\%$ (directly used for J/ Ψ dimuon trigger) XFT information is passed to SVT, where it is merged with silicon hits and allows reconstruction (and trigger on) of impact parameter

Basic properties: CDF measurements from two-track trigger

Huge samples of D⁰ and D* from TTT (p_T >2 GeV, d_0 >100m, Σp_t >5.5 GeV) high purity from the decay D*->D⁰ π_{slow}

Distinction between prompt and b decay possible from D⁰ impact parameter

Basic properties: Charm cross section

Done with few runs (limited by systematics) • $\sigma(D^0)$ pT>5.5 GeV =13.3 ± 0.2 ±1.5 µb • σ (D*)pT>6.0 GeV = 5.2 ± 0.1 ± 0.8 µb • σ (D⁺)pT>6.0 GeV =4.3 ± 0.1 ± 0.7 µb •σ(D⁺_s)pT>8 GeV =0.75 ± 0.05±0.22 μb Published in Phys.Rev.Lett.91:241804,2003 Agrees with Cacciari Nason JHEP

0309, 006 (2003), but on the high side

Basic properties: branching ratios of Cabibbo-suppressed decays and asymmetries

- D0 decays other than Kπ seen in mass plot. Γ(D⁰->KK)/Γ(D⁰->Kπ)=9.96±0.11±0.12% Γ(D⁰->ππ)/Γ(D⁰->Kπ)=3.608±0.054±0.040%
- compare with FOCUS (2003) Γ(D⁰->KK)/Γ(D⁰->Kπ)=9.93±0.14±0.14% Γ(D⁰->ππ)/Γ(D⁰->Kπ)=3.53±0.12±0.06%
- CP asymmetry: tagging the soft π from D* decays.
- $A(D^{0}-KK) = 2.0 \pm 1.2 \pm 0.6 \%$
- $A(D^{0} \rightarrow \pi\pi) = 1.0 \pm 1.3 \pm 0.6 \%$

Spectroscopy: $D_s^+ D^+$ mass difference

 First CDF Runll paper
 (Phys. Rev. D68,072004,2003)
 Careful tracker calibration using D⁰ control sample needed
 Best world measurement obtained with limited luminosity

M(D_s⁺)-M(D⁺)= 99.41±0.38(stat.)±0.21(syst.) MeV

Spectroscopy: orbitally-excited charm mesons

Total angular momentum of a meson: J=s_q+s_Q+L. Depending on relative spin orientation, 4 P-wave mesons (L=1)

In heavy quark limit, masses of mesons with same $j_q = s_q + L$ are degenerate. $1/m_o$ corrections introduce hyperfine splitting, particularly visible for $j_q = 3/2$ states, decaying via a suppressed D-wave, (width $\cong 20$ MeV). Width of $j_q = 1/2$ states is about 200 MeV.

BR B->D**

D0 has observed these states in the semileptonic B decay B-> $\mu\nu$ D** X followed by D** decay.

- Measure Br(B->μv D** X)*BR(D**->D*π)=
- $(0.280 \pm 0.021 \pm 0.088)\%$

CDF has thousands of events from TTT, aim for a mass measurement with 1 MeV accuracy

New Physics: FCNC $D^0 \rightarrow \mu \mu$ decays

SM Br is 3 x 10⁻¹³, can grow by 10⁷ in R-violating SUSY

D0-> $\pi\pi$ used as reference sample

0 events observed, 1.6±0.7 from BG

BR(D⁰->µµ)< 2.5 (3.3)x 10⁻⁶ at 90% (95%) CL (improves PDG by a factor 2)

Hunting For New States

Ssssshhhh.....

Hunting For New States

Ssssshhhh.....Wabbit hunting.

New physics: observation of X(3872)

 $|\eta| < 1.0$

0.7 0.8 0.9 1.0

ð

500

3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

J/ψπ⁺π⁻ Mass (GeV/c²)

200

0.3

0.4

0.5

0.6

 $M(\mu^{+}\mu^{-}\pi^{+}\pi^{-}) - M(\mu^{+}\mu^{-})$ [GeV/c²]

9 100

New unexpected narrow state observed by Belle in J/Ψππ $M(X) = 3872.0 \pm 0.6 \pm 0.5 MeV$

Confirmed by both Tevatron detectors CDF observes 11 σ signal with mass (hep-ex/0312021) $M(X) = 3871.3 \pm 0.7 \pm 0.4 \text{ MeV}$ D0 has 4.4 σ with

ΔM(X-Ψ(2S)) = 766.4 ± 3.5 ± 3.9 MeV

What is it? •Charmonium? •DD molecule?

What is X(3872)?

- Two leading candidates:
 - 1. A cobar state \Rightarrow like the 1 ${}^{3}D_{2}$ state
 - 2. D*D molecule (suggested by Belle)
 - Observed mass is a few MeV below threshold
 - $X \rightarrow \chi_c \gamma$ is not yet observed by Belle
 - $X \rightarrow J/\psi \rho$ forbidden for ${}^{3}D_{2}$ state
- Additional measurements to pin down the quantum numbers:
 - Helicity angles
 - $M_{\pi\pi}$ distribution (resonance structure)

Final remarks

- Despite non-dedicated, experiments at Fermilab play a major role in the field of charm physics due to huge cross section and dedicated triggers
 In particular, CDF SVT proved to be a huge success (so far, all papers published by CDF are on charm!), D0 about to install a similar system very soon
- Tevatron started to work closer to expectations, there is an even larger sample ahead of us