

Outline

Introduction

NFN

- Charm: D* in photoproduction (PHP) and Deep Inelastic Scattering (DIS), fragmentation, angular distributions.
- Open Beauty: production in PHP and DIS
- Conclusions and Outlook

• Not covered... heavy vector mesons, c-diffractive production, c+jets etc...

Longhin Andrea

HQ production studied so-far only in NC processes

Kinematic variables

- Square of *e* 4-mom. transfer
- Bjorken-x scaling variable
- Fractional E-transfer for e
- γp CMS energy

Two Q^2 regimes ...

- **Deep Inelastic Scattering (D I S):** $Q^2 > 1 GeV^2$
- Photoproduction (P H P): $Q^{2} < 1 \text{ GeV}^{2}$, $< Q^{2} > \sim 10^{-3} \text{ GeV}^{2}$ e

e scattered in the main CAL ''highly virtual'' γ

e scatterd in the beam pipe "quasi - real" γ

Why study Heavy Flavour production at HERA ?

• Heavy quark mass $(m_c, m_b^{>>} \Lambda_{QCD}) \rightarrow hard scale$

Stringent test of pQCD in a "clean" environment

- Still ... deviations observed in the past in ep experiments (as well as pp, e⁺e⁻)
- Charm: is m large enough for pQCD ?
- Sizeable Q^2 (scattered e) and p_T (jets) involved:
 - possibility to study multi-scale processes
- Study non perturbative effects (e.g. c-fragmentation universality)
- Direct handle on
 - g-density in the p xg(x) (direct "BosonGluonFusion")
 - γ partonic structure (resolved photon)
- A full set of cross section predictions at NLO level available at HERA
- Possibility of independent experimental methods

Perturbative QCD heavy flavour calculations at HERA

- Fixed order NLO calculations (massive-HQ produced dinamically)
 c/b : FMNR (Frixione et al.) HVQDIS (Harris & Smith)
 - 3-4 active flavours in p and γ (no explicit flavour excitation)
 - Not valid for $p_T >> m_O$, $Q >> m_O$
- Resummed NLL calculations (massless HQ c as an active flavour)
 c: Kniehl et al.
 - 4 active flavours in p and γ (HQ structure function, flavour excitation)
 - Valid for $p_T >> m_Q$, $Q >> m_Q$
- Matched calculations (FONLL Cacciari et al.)
 NLO mass effects + NLL p_x resummation

Leading Order Monte Carlo

- PYTHIA ,HERWIG, AROMA , RAPGAP (DGLAP evolution, dir & res)
- CASCADE (CCFM-like evolution dir only but res effectively produced. k_x dependent g-density)

Example: b at NLO

[20] J. Smith, W.L. van Neerven, Stony Book Report, ITP-SB-91-40 (1991)

• Leading order $\alpha_s \alpha_{em}$

Gluon-gluon fusion

Quark-quark fusion

• Next to leading order ${\alpha_s}^2 {\alpha_{_{em}}}$

light quark in the initial state

$\sigma_{\gamma g} O(\alpha_s)$	4.16	nb
$\sigma_{\gamma g} O(\alpha_s^2)$	1.54	
$\sigma_{\gamma q} O(\alpha_s^2)$	0.20	
$\sigma_{qq}O(\alpha_s^2)$	0.12	
$\sigma_{gg}O(\alpha_s^2)$	0.57	
	6.59 nb	¢ _{tot}

MS scheme hard scale $m = m_{p} = 4.75$ GeV

Virtual corrections for hadronic diagrams are also calculated:

P.Nason, S. Dawson, R.K. Ellis, Nucl. Phys. **B303**, 607 (1988) P.Nason, S. Dawson, R.K. Ellis, Nucl. Phys. **B327**, 049 (1989)

Longhin Andrea

IFAE 2004

Longhin Andrea

D* photoproduction: dijet angular distributions

Jet angle wrt beam in the dijet CM system:

 $\cos \theta^* = \tanh((\eta^{\text{jet1}} - \eta^{\text{jet2}})/2)$

- Associate D* with charm jet \rightarrow sign of cos θ^*
- Split sample into
 - Resolved enriched ($x_v^{OBS} < 0.75$)
 - Direct enriched $(x_{y}^{OBS} > 0.75)$

- Clear indication for g-propagator
- Charm in the γ

 $x_{\gamma}^{OBS} = \frac{\sum_{jets} E^T e^{-\eta}}{2\nu E_e} \sim \text{fraction of } \gamma \text{ energy in the hard interaction}$ ZEUS (qu) 90.4 0.4 0.2 0.6 ZEUS 1996 - 2000 HERWIG (x 2.0) PYTHIA (x 1.2) < 0.75 PYTHIA: direct (x 1.2) Jet energy scale uncertainty 0 PYTHIA: resolved (x 1.2) $x_{...}^{obs} > 0.75$ -0.8 -0.6 -0.4 0.8cosθ $\leftarrow \gamma$ direction p direction \rightarrow

Longhin Andrea

IFAE 2004

Charm in DIS

- Charm production accounts for up to 40 % of $F_2(x, Q^2)$ (at high Q^2 and low -x)
- Important to understand it properly
- Extract $F_2^{\ c}$ from differential cross sections
 - Model dependent extraction
 - Good agreement between ZEUS and H1
- $F_2^{\ c}$ rises sharply with decreasing x (gluon PDF...)
- Use differential cross sections to contrain gluon density in future NLO QCD fits

Longhin Andrea

IFAE 2004

Charm fragmentation in PHP

10 MeV

Identify $D^{*\pm}$, D^0 , D^{\pm} , D_s^{\pm} , Λ_c^{\pm} $(p_T > 3.8 \text{ GeV} |\eta| < 1.6$ $130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2$ and measure:

• **R** ratio of neutral & charged D rates

strangeness suppression factor • P

fraction of D mesons in a vector state

fraction of charged D mesons in a vector state

• $f(c \rightarrow D, \Lambda)$

fragmentation fractions

Longhin Andrea

• γ .

• P °

Charm fragmentation (contd)

	ZEUS prel. $(\gamma \mathbf{p})$ results	H1 prel. (DIS) results	e^+e^- results
$\mathbf{R}_{u/d}$	$1.014 \pm 0.068 ^{+0.024}_{-0.031}$	$1.26 \pm 0.20 \pm 0.11 \pm 0.04$	$0.963 \pm 0.051 \pm 0.054$
· ·			1.02 ± 0.12
			1.19 ± 0.36
$\gamma_{\rm s}$	$0.266 \pm 0.023^{+0.014}_{-0.012}$	$0.36 \pm 0.10 \pm 0.01 \pm 0.08$	0.26 ± 0.03
$\mathbf{P}_{\mathbf{v}}^{\mathbf{d}}$	$0.557 \pm 0.023 ^{+0.009}_{-0.006}$	$0.693 \pm 0.045 \pm 0.004 \pm 0.009$	0.595 ± 0.045
P_{v}	$0.554 \pm 0.019 ^{+0.008}_{-0.004}$	$0.613 \pm 0.061 \pm 0.033 \pm 0.008$	$0.620 \pm 0.014 \pm 0.014$
			0.57 ± 0.05
$\mathbf{f}(\mathbf{c} \to \mathbf{D}^+)$	$0.249 \pm 0.014 \substack{+0.004 \\ -0.008}$	$0.202 \pm 0.020^{+0.045 + 0.029}_{-0.033 - 0.021}$	0.232 ± 0.010
$f(\mathbf{c} ightarrow \mathbf{D}^0)$	$0.557 \pm 0.019 ^{+0.005}_{-0.013}$	$0.658 \pm 0.054^{+0.117 + 0.086}_{-0.142 - 0.048}$	0.549 ± 0.023
$f(c \rightarrow D_s^+)$	$0.107 \pm 0.009 \pm 0.005$	$0.156 \pm 0.043^{+0.036+0.050}_{-0.035-0.046}$	0.101 ± 0.009
$f(\mathbf{c}\to \Lambda_{\mathbf{c}}^+)$	$0.076 \pm 0.020 \substack{+0.017 \\ -0.001}$		0.076 ± 0.007
$\mathbf{f}(\mathbf{c} \to \mathbf{D}^{*+})$	$0.223 \pm 0.009^{+0.003}_{-0.005}$	$0.263 \pm 0.019^{+0.056+0.031}_{-0.042-0.022}$	0.235 ± 0.007

Results from e⁺e⁻ and ep in good agreement (c-fragmentation universality)
 HERA results competitive with e⁺e⁻

Beauty: signal tagging

b with µ +dijet in PHP: selection

Control plots

Data compared to the Pythia MC distributions from b c and LF mixed accordingly to PYTHIA cross sections and normalised to the data

Good agreement between data and Monte Carlo

$$x_{\gamma}^{\text{jets}} = rac{\sum_{i=1}^{2} (E-p_z)^{ ext{jet}_i}}{E-p_z}$$

b in μ +dijet in PHP: differential muon σ

 \mathbf{P}_{T}^{rel} fit in each bin

- µ-chambers efficiencies
- shape of the bck p_{T}^{rel} distribution

(Pythia 6.2 p_T^{rel} distribution reweighted to a dijet control sample of real data)

•
$$m_b = 4.75 \text{ GeV}, \ \mu = m_T = \sqrt{\langle p_T^b \rangle^2 + m_b^2};$$

- jets done running k_T on partons;
- parton level jets corrected to hadron level using PYTHIA and HERWIG: from 20% (rear region) to 3% (large p_T^{μ})
- $b \rightarrow B$ fragmentation with Peterson, $\varepsilon = 0.0035;$
- $B \rightarrow \mu$ according to PYTHIA.

b in μ + dijet for PHP: differential muon σ ZEUS-H1

Η1 Ρ^{rel}+ δ

H1 in a more central region gets a poorer agreement with NLO (especially at low p_T^{μ}) to be investigated ...

b in μ +dijet in PHP: differential jet σ

 p_T^{rel} fit in each bin μ -jet

μ-jet cross sections extrapolated for μ decay and *BR* using Pythia

B-jet

Good agreement with NLO and MC

b in µ + dijet in PHP: direct-resolved production

Summary of the ZEUS b- in PHP measurements

To be extended soon with more statistics

Cross section for b-quark extrapolated using NLO calculations

... low p_{τ}^{b} region to be covered with the $\mu + D^{*}$ analysis (see next)

Longhin Andrea

IFAE 2004

IFAE 2004

 $\mu + D^*$: comparison with NLO

• PHP and DIS σ_{vis} converted at b-quark level with Monte Carlo hadronisation models to compare with NLO calculations (FMNR for PHP and HVQDIS for DIS)

 $y_{rap}^{b} < 1$ no p_{T}^{b} cut $Q^{2} < 1 \text{ GeV}^{2} + 0.05 < y < 0.85$ in PHP $Q^{2} > 2 \text{ GeV}^{2} + 0.05 < y < 0.7$ in DIS

• The μ -spectrum in the B⁰ CMS as implemented in the PYTHIA MC has been checked to reproduce the measured one (at the B-factories with e).

Data tends to be
above NLONLO (FMNR, HVQDIS) $\sigma_{PHP}(ep \rightarrow b\overline{b} X) = 15.1 \pm 3.9 \text{ (stat.)}^{+3.8}_{-4.7} \text{ (sys.) nb}_{-4.7} \text{ (sys.) nb}_{-4.7} \text{ (sys.) nb}_{-1.0} \text{ (sys.) nb}$ $\sigma_{NLO}_{PHP}(\gamma^*p \rightarrow bb X) = 5.0^{+1.7}_{-1.1} \text{ nb}_{-1.1} \text{ nb}_{-1.0} \text{ (sys.) nb}$ $\sigma_{DIS}(ep \rightarrow b\overline{b} X) = 3.2 \pm 1.5 \text{ (stat.)}^{+0.9}_{-1.0} \text{ (sys.) nb}$ $\sigma_{NLO}_{DIS}(ep \rightarrow bb X) = 0.87^{+0.28}_{-0.16} \text{ nb}_{-0.16} \text{ nb$

 H1 results compared to LO:
 Charm : Data / LO (Aroma) = 1.8 Beauty : Data / LO (Aroma) = 3.6

Conclusions and Outlook

- Heavy flavour production in *ep* collisions is a good testing ground for pQCD
- Charm production:
 - Precise studies possible in perturbative and non perturbative sector!
 - Reasonable agreement with expectations, some aspects need further clarification (deviation in certain phase space regions ... i.e. high η)
- Beauty production
 - Measured with μ+dijet (high statistics) and μ+D* (complementary: low p_T^b) in both PHP and DIS.
 - Good agreement with NLO (ZEUS). Slight excess (H1)
 - Excess in µ+D* (to be confirmed with more stats !)
- HERA II higher luminosity and new detectors in both H1 and ZEUS (better tracking, displaced vertices, better coverage of forward region) will contribute to resolve the remaining issues

D[±] reconstruction with new data

Pythia 6.2:

- includes direct, resolved and flavour excitation (27%) processes;
- *b*-quark string fragmentation with Peterson, $\varepsilon = 0.0041$;
- branching-ratios for b decay, $b \rightarrow \mu X$ and via cascade, taken from the PDG;
- $B \rightarrow \mu$ momentum spectrum checked with measurements from Belle and BaBar;

CASCADE 1.1:

- k_T factorisation;
- CCFM evolution for the proton parton densities;
- Peterson fragmentation, $\varepsilon = 0.0041$.

CTEQ5M1 + AGF structure functions $m_c = 1.5 \pm 0.2 \text{ GeV} \quad \mu_0 = \sqrt{m_c^2 + p_T^2}$ $\mu_R = \mu_F = \mu$ $\mu_0/2 < \mu < \mu_0$ $f(c \rightarrow D^*) = 0.235 \epsilon = 0.035 (FO NLO)$, 0.02 (FONLL)