Heavy Quarkonium

Antonio Vairo

INFN and University of Milano

Motivations

• Competitive source of some SM parameters:

 m_t , m_b , m_c , α_s , ...

Motivations

• Competitive source of some SM parameters:

 $m_t, m_b, m_c, \alpha_s, \dots$

• Privileged system to study the interplay of perturbative and non-perturbative QCD.

The modern framework is provided by Non-Relativistic EFTs. They enable a systematic study, combining perturbative and lattice QCD.

Quarkonium at Present & Future Colliders

- $c\bar{c}$ BES, E835, KEDR, CLEO-c; $b\bar{b}$ CLEO-III
- hybrids, glueballs (BES, CEBAF, ...)
- Production at Fermilab (CDF, D0)
- Production at Hera (Zeus, H1)
- Production at B factories (BaBar, Belle)
- Quark-gluon plasma (NA60 at CERN, Star and Phenix at RHIC)
- Physics at NLC (TESLA,CLIC)
- LHC at CERN, Panda at GSI

The mass scale is perturbative: $m_b \simeq 5 \text{ GeV}, m_c \simeq 1.5 \text{ GeV}$

The mass scale is perturbative: $m_b \simeq 5 \text{ GeV}, m_c \simeq 1.5 \text{ GeV}$

The system is non-relativistic: $\Delta_n E \sim mv^2$, $\Delta_{\rm fs} E \sim mv^4$ $v_b^2 \simeq 0.1$, $v_c^2 \simeq 0.3$

The mass scale is perturbative: $m_b \simeq 5 \text{ GeV}, m_c \simeq 1.5 \text{ GeV}$

The system is non-relativistic: $\Delta_n E \sim mv^2$, $\Delta_{\rm fs} E \sim mv^4$ $v_b^2 \simeq 0.1$, $v_c^2 \simeq 0.3$

The dynamical scales are: $r \sim 1/mv$, $E \sim mv^2$ $v \ll 1$

Non-Relativistic EFT

In QCD another scale is relevant: Λ_{QCD}

NRQCD

Degrees of freedom that scale like m are integrated out:

- The matching is perturbative.
- The Lagrangian is organized as an expansion in v and $\alpha_{\rm s}(m)$.

Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97

Degrees of freedom that scale like mv are integrated out:

Degrees of freedom that scale like mv are integrated out:

• The matching is perturbative

Degrees of freedom that scale like mv are integrated out:

Degrees of freedom: quarks and gluons

Q- \overline{Q} states, with energy $\sim \Lambda_{\rm QCD}$, mv^2 momentum $\leq mv$ \Rightarrow i) singlet S ii) octet O

Gluons with energy and momentum $\sim \Lambda_{\rm QCD}$, mv^2

Degrees of freedom that scale like mv are integrated out:

• Power counting: $r \sim \frac{1}{mv}$ and $t, R \sim \frac{1}{mv^2}$, $\frac{1}{\Lambda_{\rm QCD}}$

The gauge fields are multipole expanded:

$$A(R, r, t) = A(R, t) + \mathbf{r} \cdot \nabla A(R, t) + \dots$$

Non-analytic behaviour in $r \rightarrow$ matching coefficients V

pNRQCD for
$$mv \gg \Lambda_{\rm QCD}$$

$$\mathcal{L} = \operatorname{Tr} \left\{ \mathbf{S}^{\dagger} \left(i\partial_{0} - \frac{\mathbf{p}^{2}}{m} - V_{s} \right) \mathbf{S} + \mathbf{O}^{\dagger} \left(iD_{0} - \frac{\mathbf{p}^{2}}{m} - V_{o} \right) \mathbf{O} \right\}$$

LO in r

$$\theta(T) e^{-iTH_s} \qquad \qquad \theta(T) e^{-iTH_o} \left(e^{-i\int dt A^{\mathrm{adj}}} \right)$$

pNRQCD for
$$mv \gg \Lambda_{\rm QCD}$$

$$\mathcal{L} = \operatorname{Tr} \left\{ \mathbf{S}^{\dagger} \left(i\partial_{0} - \frac{\mathbf{p}^{2}}{m} - V_{s} \right) \mathbf{S} + \mathbf{O}^{\dagger} \left(iD_{0} - \frac{\mathbf{p}^{2}}{m} - V_{o} \right) \mathbf{O} \right\}$$

LO in r

 $+V_{A} \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \mathbf{S} + \mathbf{S}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \mathbf{O} \right\}$ $+ \frac{V_{B}}{2} \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \mathbf{O} + \mathbf{O}^{\dagger} \mathbf{O} \mathbf{r} \cdot g \mathbf{E} \right\}$ $- \frac{1}{4} F_{\mu\nu}^{a} F^{\mu\nu a}$

NLO in r

Pineda Soto 97, Brambilla Pineda Soto Vairo 99, 00, 03

pNRQCD for
$$mv \gg \Lambda_{\text{QCD}}$$

 $\overbrace{\xi}^{\dagger}$
 $O^{\dagger}\mathbf{r} \cdot g\mathbf{ES}$
 $O^{\dagger}\{\mathbf{r} \cdot g\mathbf{E}, O\}$

$$+V_{A} \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{S} + \mathbf{S}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{O} \right\} \\ + \frac{V_{B}}{2} \operatorname{Tr} \left\{ \mathbf{O}^{\dagger} \mathbf{r} \cdot g \mathbf{E} \, \mathbf{O} + \mathbf{O}^{\dagger} \mathbf{O} \mathbf{r} \cdot g \mathbf{E} \right\} \\ - \frac{1}{4} F_{\mu\nu}^{a} F^{\mu\nu a}$$

NLO in r

The Static Potential

The Static Potential

$$V_s(\mathbf{r}) = \lim_{T \to \infty} \frac{i}{T} \ln \langle \Box \rangle + \int dt \, e^{it(V_0 - V_s)} \, \langle \mathbf{r} \cdot E(t) \, \mathbf{r} \cdot E(0) \rangle + \dots$$

The Static Potential

$$V_{s}(r,\mu) = -C_{F} \frac{\alpha_{V_{s}}(r,\mu)}{r}$$

$$\alpha_{V_{s}}(r,\mu) = \alpha_{s}(r) \Big[1 + \tilde{a}_{1}\alpha_{s}(r) + \tilde{a}_{2}(\alpha_{s}(r))^{2} + \frac{\alpha_{s}^{3}}{\pi} \frac{C_{A}^{3}}{12} \ln \mu r \Big]$$

 $ilde{a}_1$ Billoire 80, $ilde{a}_2$ Schröder 99, Peter 97,

3 loop LL Brambilla Pineda Soto Vairo 99

Summing Logs

$$\begin{cases} \mu \frac{d}{d\mu} \alpha_{V_s} = \frac{2}{3} \frac{\alpha_s}{\pi} V_A^2 \left[\left(\frac{C_A}{2} - C_F \right) \alpha_{V_o} + C_F \alpha_{V_s} \right]^3 \\ \mu \frac{d}{d\mu} \alpha_{V_o} = \frac{2}{3} \frac{\alpha_s}{\pi} V_A^2 \left[\left(\frac{C_A}{2} - C_F \right) \alpha_{V_o} + C_F \alpha_{V_s} \right]^3 \\ \mu \frac{d}{d\mu} \alpha_s = \alpha_s \beta(\alpha_s) \\ \mu \frac{d}{d\mu} V_A = 0 \\ \mu \frac{d}{d\mu} V_B = 0 \end{cases}$$

Summing Logs

Pineda Soto 00

Summing $(\alpha_s \beta_0)^n$

 V_s is affected by renormalons: $V_s(renormalon) = C_0 + C_2 r^2 + \dots$

Summing
$$(\alpha_{
m s}\beta_{0})^{n}$$

 V_s is affected by renormalons: $V_s(renormalon) = C_0 + C_2 r^2 + \dots$

$$C_0 \simeq -2 \frac{C_F \alpha_{\rm s}(\mu)}{\pi} \mu \sum_{n=0}^{\infty} n! \left(\frac{\beta_0 \alpha_{\rm s}(\mu)}{2\pi}\right)^n$$
$$\Rightarrow \delta C_0 \sim \Lambda_{\rm QCD}$$

$$C_{2} \simeq \frac{1}{9} \frac{C_{F} \alpha_{s}(\mu)}{\pi} \mu^{3} \sum_{n=0}^{\infty} n! \left(\frac{\beta_{0} \alpha_{s}(\mu)}{6\pi}\right)^{n}$$
$$\Rightarrow \delta C_{2} \sim \Lambda_{\text{QCD}}^{3}$$

 $1/r \gg \mu \gg \Lambda_{\rm QCD}$

Aglietti Ligeti 95

Summing
$$(\alpha_{\rm s}\beta_0)^n$$

 V_s is affected by renormalons: $V_s(renormalon) = C_0 + C_2 r^2 + \dots$

The $\mathcal{O}(\Lambda_{QCD})$ renormalon cancels against the pole mass.

Beneke 98, Pineda 98, Hoang Smith Stelzer Willenbrock 99

The $\mathcal{O}(\Lambda^3_{\text{OCD}})$ renormalon cancels in pNRQCD.

Brambilla Pineda Soto Vairo 99

Static potential vs lattice QCD

Renormalon subtraction (RS) is crucial in comparing the perturbative static potential with lattice data.

Static potential vs lattice QCD

Renormalon subtraction (RS) is crucial in comparing the perturbative static potential with lattice data.

Static potential vs lattice QCD No signal of short range non-perturbative effects.

Brambilla Sumino Vairo 01, Necco Sommer 01

Sumino 02, Pineda 02, Lee 02 03 NNLL + 3 loop est. $r_{0}(V_{PS}(r) - V_{PS}(r) + E_{10t}(r))$ 3 **NNLO NLO** 2 LO 1 $\alpha_{\rm s} = \alpha_{\rm s}(1/r)$ 0 $\nu_f = \nu_{us} = 2.5 r_0^{-1}$ -1 $r' = 0.15399 r_0$ 0.2 0.6 0.8 0.4 0 1 r = 0.5 fmr/r

Quarkonium Spectrum at LL
$$m\alpha_s^5$$

$$E_n = \langle n | V_s(\mu) | n \rangle - i \frac{g^2}{3N_c} \int_0^\infty dt \, \langle n | \mathbf{r} e^{it(E_n^{(0)} - H_o)} \mathbf{r} | n \rangle \, \langle \mathbf{E}(t) \, \mathbf{E}(0) \rangle(\mu)$$

Brambilla Pineda Soto Vairo 99

Quarkonium Spectrum at LL $m\alpha_s^5$

$$E_n = \langle n | V_s(\mu) | n \rangle - i \frac{g^2}{3N_c} \int_0^\infty dt \, \langle n | \mathbf{r} e^{it(E_n^{(0)} - H_o)} \mathbf{r} | n \rangle \, \langle \mathbf{E}(t) \, \mathbf{E}(0) \rangle(\mu)$$

 $\sim e^{i\Lambda_{\rm QCD}t}$

b mass from the Υ system

Ref.	Method	Order	$\overline{m}_b(\overline{m}_b)$ (MeV)
MY99	nonrelativistic Υ sum rules*	NNLO	4200 ± 100
BS99	II	"	4250 ± 80
H00	II	"	4170 ± 50
KS01	low moments sum rules	"	4209 ± 50
BSV01	spectrum, $\Upsilon(1S)$ resonance*	"	$4190 \pm 20 \pm 25 \pm 3$
P01	II	LL N ³ LO*	$4210\pm90\pm25$
PS02	n	N ³ LO*	4346 ± 70

* pole mass vs static potential renormal cancellation * $\Upsilon(1S)$ mass at N³LO:

$$\frac{\delta E_{\Upsilon(1S)}}{E_{\text{Bohr}}} = \alpha_{\text{s}}^{3} (104.819 + 15.297 \log \alpha_{\text{s}} + 0.001 a_{3})$$

$$\delta m_{b}(m_{b}) \simeq 25 \text{ MeV}$$

Melnikov Yelkhovsky 99, Beneke Signer 99, Hoang 00, Kuhn Steinhauser 01, Brambilla Sumino Vairo 01, Pineda 01, Penin Steinhauser 02

b mass from the Υ system

Ref.	Method	Order	$\overline{m}_b(\overline{m}_b)$ (MeV)
MY99	nonrelativistic Υ sum rules*	NNLO	4200 ± 100
BS99	n	"	4250 ± 80
H00	n	"	4170 ± 50
KS01	low moments sum rules	"	4209 ± 50
BSV01	spectrum, $\Upsilon(1S)$ resonance*	"	$4190 \pm 20 \pm 25 \pm 3$
P01	n	LL N ³ LO*	$4210\pm90\pm25$
PS02	n	N ³ LO*	4346 ± 70

	Method	$\overline{m}_b(\overline{m}_b) \; (\text{MeV})$
B system	Inclusive moments	
	(i) lepton spectrum	4310 ± 130
	(ii) γ energy/ had. inv. mass	4220 ± 90
	lattice QCD (stat. limit)	4260 ± 90

El-Khadra Luke 02

Threshold $t\bar{t}$ cross section

Hoang Teubner 01

η_b mass

$$M(\eta_b) = 9421 \pm 10 \,(\text{th}) \,{}^{+9}_{-8} \,(\delta \alpha_s) \,\,\text{MeV}$$

Kniehl Penin Pineda Smirnov Steinhauser 03

• We consider gluonic excitations between static quarks.

- We consider gluonic excitations between static quarks.
- These are of three types:

- We consider gluonic excitations between static quarks.
- At short distance, $1/r \gg \Lambda_{QCD}$, and at lowest order in the multipole expansion, the singlet decouples while the octet is still coupled to gluons.

- We consider gluonic excitations between static quarks.
- Static hybrids at short distance are called gluelumps and are described by:

$$\mathbf{H}(R, r, t) = \mathrm{Tr}\{\mathbf{O}H\}$$

i.e. a static adjoint source (O) in the presence of a gluonic field (H).

 Depending on the glue operator H and its symmetries, the operator Tr{OH} describes a speci£c gluelump of energy E_H.

Symmetries of a diatomic molecule + C.C.

a) $|L_z| = 0, 1, 2, ...$ = $\Sigma, \Pi, \Delta ...$ b) CP (u/g) c) Reflection (+/-) (for Σ only)

Symmetries of a diatomic molecule + C.C.

a) $|L_z| = 0, 1, 2, ...$ = $\Sigma, \Pi, \Delta ...$ b) CP (u/g) c) Reflection (+/-) (for Σ only)

	L = 1	L = 2
$\Sigma_g^+{}'$	$\mathbf{r} \cdot (\mathbf{D} imes \mathbf{B})$	
Σ_g^-		$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{B})$
Π_g	$\mathbf{r} \times (\mathbf{D} \times \mathbf{B})$	
Π'_g		$\mathbf{r} imes ((\mathbf{r} \cdot \mathbf{D})\mathbf{B} + \mathbf{D}(\mathbf{r} \cdot \mathbf{B}))$
Δ_g		$(\mathbf{r} imes \mathbf{D})^i (\mathbf{r} imes \mathbf{B})^j +$
		$+(\mathbf{r} imes \mathbf{D})^j(\mathbf{r} imes \mathbf{B})^i$
Σ_u^+		$(\mathbf{r}\cdot\mathbf{D})(\mathbf{r}\cdot\mathbf{E})$
Σ_u^-	$\mathbf{r} \cdot \mathbf{B}$	
Π_u	$\mathbf{r} imes \mathbf{B}$	
Π'_u		$\mathbf{r} imes ((\mathbf{r} \cdot \mathbf{D})\mathbf{E} + \mathbf{D}(\mathbf{r} \cdot \mathbf{E}))$
Δ_u		$(\mathbf{r} imes \mathbf{D})^i (\mathbf{r} imes \mathbf{E})^j +$
		$+(\mathbf{r} imes \mathbf{D})^{j}(\mathbf{r} imes \mathbf{E})^{i}$

Brambilla Pineda Soto Vairo 99

Brambilla Pineda Soto Vairo 99

Juge Kuti Morningstar 98, 02

At LO in the multipole expansion

$$H = H = H = e^{-iTE_{H}}$$

$$E_{H} = V_{o} + \frac{i}{T} \ln \langle H^{a}(\frac{T}{2})\phi_{ab}^{adj}H^{b}(-\frac{T}{2}) \rangle$$
From
$$\langle H^{a}(\frac{T}{2})\phi_{ab}^{adj}H^{b}(-\frac{T}{2}) \rangle^{np} \sim h e^{-iT\Lambda_{H}}$$

$$E_{H}(r) = V_{o}(r) + \Lambda_{H}$$

Octet potential vs lattice QCD

Renormalon subtraction (RS) is crucial in comparing the perturbative static octet potential with lattice data.

Octet potential vs lattice QCD

 Λ_B correlation length

 $\Lambda_B^{\rm RS}(\nu_f = 2.5 \, r_0^{-1}) = [2.25 \pm 0.10(\text{latt.}) \pm 0.21(\text{th.}) \pm 0.08(\Lambda_{\overline{\rm MS}})] \, r_0^{-1}$

for $\nu_f = 2.5 r_0^{-1} \approx 1 \text{ GeV}$ $\Lambda_B^{\text{RS}}(1 \text{ GeV}) = [0.887 \pm 0.039(\text{latt.}) \pm 0.083(\text{th.}) \pm 0.032(\Lambda_{\overline{\text{MS}}})] \text{ GeV}$

Octet potential vs lattice QCD

Higher Gluelump excitations

J^{PC}	Н	$\Lambda_H^{ m RS} r_0$	$\Lambda_H^{ m RS}/ m GeV$
1+-	B_i	2.25(39)	0.87(15)
1	E_i	3.18(41)	1.25(16)
$2^{}$	$D_{\{i}B_{j\}}$	3.69(42)	1.45(17)
2^{+-}	$D_{\{i}E_{j\}}$	4.72(48)	1.86(19)
3^{+-}	$D_{\{i}D_jB_{k\}}$	4.72(45)	1.86(18)
0++	\mathbf{B}^2	5.02(46)	1.98(18)
4	$D_{\{i}D_jD_kB_{l\}}$	5.41(46)	2.13(18)
1-+	$({f B}\wedge{f E})_i$	5.45(51)	2.15(20)

Foster Michael 99, Bali Pineda 03

Conclusion

Heavy quarkonium is

- a competitive source for some of the SM parameters:
 m_t, *m_b*, *m_c*, *α*_s, ...
- a privileged system to study the interplay of perturbative and non-perturbative QCD.
 - \rightarrow large order perturbation theory vs lattice QCD
 - \rightarrow precision physics from lattice QCD

http://www.qwg.to.infn.it

QWG III workshop: 12-15 October 2004 IHEP Beijing

 \rightarrow Yellow Report 2004