

T. Lari INFN and Universita` degli studi, Milano ATLAS Collaboration

Searches for New Physics at the LHC

Torino, 15-04-2004

T. Lari

Introduction

Many extensions of the Standard Model are motivated by the hierarchy problem

- The Planck scale $(10^{19} \text{ GeV}) \gg \text{EW}$ scale (10^2 GeV)
- Radiative corrections drive the Higgs mass to the upper scale, unless an exceptionally fine tuning of parameters provides cancellations

Possible solutions:

• **Supersimmetry:** for each SM particle a susy partner is introduced. SM and susy particle contributions to Higgs mass have opposite sign.

- Little Higgs model: The SM gauge group is part of a larger group broken at a few TeV. Additional particles provide cancelations of SM contributions to $m_{\rm H}$
- Extra spatial dimensions: strong gravity at TeV scale

To avoid fine tuning, the new physics must appear at the TeV scale

This talk covers Little Higgs and Extra Dimensions searches

Torino, 15-04-2004

T. Lari

Little Higgs Models

Known and new Higgs, gauge bosons coming from breaking a SU(5) simmetry at scale v (few TeV). A new heavy quark (color singlet) is introduced as well. Divergent contribution to the Higgs mass from top, W, Z and Higgs

loops are canceled by the new particles:

- •Heavy gauge bosons Z_H , W_H , A_H $m < 6 \text{ TeV} (m_h/200 \text{ GeV})^2$
- Heavy quark T (electroweak singlet) $v\sqrt{2} < m < 2 \text{ TeV} (m_h/200 \text{ GeV})^2$
- New Higgs bosons $\Phi^0 \Phi^+ \Phi^{++}$

 D^{++} m < 8 TeV (m_h/200 GeV)²

"Littlest Higgs model" (T. Han et al., Phys. Rev. D67, 095004) used for a detailed ATLAS study (G. Azuelos et al., hep-ph/0402037). _____ CMS study for generic heavy gauge bosons is also relevant (M. Dittmar et al., hep-ph/0307020).

Torino, 15-04-2004

T. Lari

New Quark T

Parameters: M_T , λ_1/λ_2 Decays: $T \rightarrow Wb 50\%$ $T \rightarrow Zt 25\%$ $T \rightarrow Zh 25\%$ Narrow resonance: $\Gamma = k^2/32\pi M_T$ $k = \lambda_1/\sqrt{\lambda_1^2} + \lambda_2^2$

Torino, 15-04-2004

T. Lari INFN and University of Milan

T Quark Search

ATLAS

1500

2000

- ATLAS study (hep-ph/0402037)
- Plots for 300 fb⁻¹

 $M_{\rm T} < 1050 \ (1400) \ {\rm GeV}$

Torino, 15-04-2004

 $M_{\rm T}$ < 2000 (2500) GeV

Lari

T→ht→bblvb 4σ significance at $M_{\rm T} = 1000 \,\,{\rm GeV}$ Somewhat lower at $M_T = 700 \text{ GeV}$ (more tt

1000

Mass(jjjev) (GeV)

Т

tt

500

ATLAS

1500

background)

INFN and University of Milan

Τ.

New Gauge Bosons

Parameters: M, $\cot\theta$ (for $Z_{\rm H}$) $\cot\theta'$ (for $A_{\rm H}$)

 $A_{\rm H} \rightarrow ee, \, \mu\mu$

$$Z_{\rm H} \rightarrow ee, \ \mu\mu$$

 $W_{\rm H} \rightarrow e\nu, \, \mu\nu$

- Up to ~5 TeV, except for small $\cot\theta (Z_H, W_H)$ and $\tan\theta \approx 1.3 (A_H)$
- CMS reach similar
- Cross section, width measure θ

INFN and University of Milan

Τ.

NFN

Gauge Bosons: Higgs channel

INFN and University of Milan

Lari

Τ.

NFN

Heavy Higgs

- Less constrained in mass
- $qq \rightarrow \phi^{++}\phi^{--} \rightarrow 4l$ (too small cross section)
- $qq \rightarrow q'q' \Phi^{++} \rightarrow q'q' W^{+} W^{+} \rightarrow q'q'$ $||_{\mathcal{V}}$
- Coupling φWW depends on v['] (VEV of Higgs triplet)
- From EW data v' < 15 MeV
- For $m_{\phi} = 1000 (1500) \text{ GeV}$ discovery requires v' > 29(54) MeV
- Φ⁺ and Φ⁰ probably even more difficult

Torino, 15-04-2004

T. Lari INFN and University of Milan

Extra Dimensions

Several models (review in hep-ph/0205106):

Large Extra Dimensions

Direct production and virtual effects of gravitons

- TeV⁻¹ size extra dimension
 Kaluza-Klein excitations of gauge bosons
- Small Warped extra dimension graviton narrow resonance – radion

Torino, 15-04-2004

T. Lari

Large Extra Dimensions

ADD model: Arkani-Hamed, Dimopoulos and Dvali.

N. Arkhani-Hamed et al., Phys. Lett. B429, 263 N. Arkhani-Hamed et al., Phys. Rev. D59, 086004 I. Antoniadis et al., Phys. Lett. B436, 257

δ new dimensions of size TeV⁻¹ $\leq R_0 \leq 0.2$ mm

• Gravity propagates in the whole space (bulk) \rightarrow increases as R^{-(2+\delta)} for R < \mathbb{R}_0 and is strong at scale M_D (~ TeV).

- $M_D^{\delta+2} R_0^{\delta} = M_{Planck} \rightarrow R_0 \sim 1 \text{ mm} (\delta=2) \text{ or } 10 \text{ fm} (\delta=6)$
- Direct tests of Newton's law exclude $\delta=1$, $\delta=2$ marginal ($R_0 < 190 \mu m$)
- Stringent (but model-dependent) astrophysical limits
- Low-energy Kaluza-Klein graviton excitations. Universal and weak coupling to SM particles. Large number of states (~ continuum).

Torino, 15-04-2004

T. Lari

Large extra dimension: direct searches

Torino, 15-04-2004

T. Lari

Large ED: indirect searches

- Virtual exchange of gravitons modify Drell-Yan X-sections, asymmetries
- UV divergence, ignorance of full theory use cut-off M_S

NFN

TeV⁻¹ Search

10

10

- One ED, gauge bosons in the bulk fermions on 4D brane at one/two fixed points in 5th dimension (M1/M2 models).
- KK spectra for $Z^{(k)}, W^{(k)}$: $m_k^2 =$ $m_0^2 + k^2 M_C^2$
- EW data: $M_C > 4 \text{ TeV}$
- Only first resonance observable
- Discovery with ee, $\mu\mu$, ev, $\mu\nu$
- Precision measurements with electrons

$\Delta E/E$	2 TeV e	2 TeV µ
ATLAS	0.7 %	20 %
CMS	0.6 %	6%

 $Z^{(1)}/\gamma^{(1)}$: G.Azuelos and G.Polesello, in hep-ph/0204031 W⁽¹⁾: G.Polesello, M.Prata

4000

m_τ (GeV)

6000

8000

2000

ATLAS e⁺e⁻

M1 M_{kk}=4 TeV M2 M_{KK}=4 TeV

 $\gamma(1)/Z(1)$

Torino, 15-04-2004

Lar.

Τ.

ee.

TeV⁻¹ Sized ED Reach

Sensitivity to peak (100 fb⁻¹, S/ \sqrt{B} >5, S>10): 5.8 TeV Reach (with interference in tail, el.,100 fb⁻¹): 9.5 TeV Ultimate (with interference, el.+muons, 300 fb⁻¹): 13.5 TeV

Torino, 15-04-2004

INFN and University of Milan

Discrimination of Models

Cross section, width, resonance shape Not shown: asymmetries
Discrimination Z ⁽¹⁾/Z'/G* possible W⁽¹⁾/W' difficult

process	$\sigma \times BR(Z^* \to e^+e^-)$ (fb)
$Z^{(1)}/\gamma^{(1)}$	4.05
$Z^{(1)}/\gamma^{(1)}$ -M2	11.75
Z'	4.65
$qq \rightarrow G^*$	0.20
$gg \to G^*$	0.13
$qq \rightarrow e^+e^-$	4.83

Randall-Sundrum model

INFN and University of Milan

RS Graviton Searches

• The RS scenario has been studied both by ATLAS (B.C. Allanach et al., hep-ph/0211205) and CMS (P. Traczyk et al., hep-ex/0207061)

Torino, 15-04-2004

RS Graviton Reach

Channels: $G \rightarrow ee$, $\mu\mu$, $\gamma\gamma$, WW, ZZ, jj

LHC is sensible to first three channels over all the parameter space constrained by c < 0.1 (theoretical requirement on curvature) and Λ_{π} < 10 TeV : (no new hierarchy)

RS Graviton Studies

- May be possible to observe second resonance (spaced as Bessel function zeros)
- Spin measurement possible over most of parameter space (endcaps needed!)

INFN and University of Milan

Radion

- A scalar field is introduced to stabilize the distance between branes.
- Possibly lighter than $G^{(1)}$ W.D. Goldberger, M.B. Wise, PRL 83 4922 (1999)
- Coupling similar to Higgs, mixes with Higgs (angle ξ)
- More coupling to gluons, narrow width
- See talk of L. Fano G.Giudice, R.Rattazzi, J.D.Wells, hep-ph/0002178

Radion searches

Again, see L. Fano talk

INFN and University of Milan

Black Holes production

S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 S.B. Giddins and S. Thomas, Phys. Rev. D65, 056010

- When $\sqrt{s} > M_{Pl}$ (gravity scale) black hole production is possible
- $\sigma \sim \pi R_s^2$ (large, but suppressed by parton pdf)

•
$$\sigma_{tot} = 0.5 \text{ nb} (M_p = 2 \text{ TeV}, \delta = 7)$$

•
$$\sigma_{tot} = 120 \text{ fb} (M_p = 6 \text{ TeV}, \delta = 3)$$

Uncertainties because of missing quantum gravity theory

• Decay via Hawking radiation with $T \sim 100 \text{ GeV} (10^{15} \text{ K})$

Multeplicity ~ 10, all particles
 with m << T produced with equal
 probability

Torino, 15-04-2004

INFN and University of Milan

Τ.

Black Hole Events

Tag event with at least 4 jets + photon or electron → SM background small

Black Holes activities

• Measure δ from $T_H - M_{BH}$ relation: $\log(T_H) = \frac{-1}{n+1}\log(M_{BH}) + const$ M_{BH} measured for each event

 $T_{\rm H}$ from lepton/photon energy distribution in bins of $M_{\rm BH}$ However: affected by quantum gravity effects

BH as factories of Higgs and other heavy particles (tag with BH signatures eliminates SM background)
 Can see a light Higgs with 1 hour statistic

INFN and University of Milan

Lari

Τ.

Conclusions

- Models beyond the SM present a rich and exciting phenomenology
- The LHC will be able to study most of it over most of the favoured parameter space
- Many other studies not included in this talk
- Looking forward to the first data!

Torino, 15-04-2004

T. Lari

Backup slides

Torino, 15-04-2004

T. Lari

Slide of L. Vacavant talk at EPS Aachen – Jul 03

Characterization of the model: \rightarrow measure both M_D and δ

Precise measurement of Xsection:

• difficult:

case (δ =2, M_D = 5 TeV) very similar to the case (δ =4, M_D = 4 TeV) for instance • not (yet) investigated in details

Run at a different CME:

CMS spin-1 rejection

Torino, 15-04-2004

T. Lari

