Misure dell'angolo β della matrice CKM in BaBar e BELLE

Lorenzo Vitale Università e INFN Trieste

IFAE, TORINO 15 aprile 2004

Outline

- Breve introduzione
- Rassegna risultati nelle tre categorie di dec.
- Novità rilevanti conf. invernali (da BaBar):
 - 1. Segno di β da $J/\psi K^* (K^* \rightarrow K_S \pi^0)$
 - 2. Test MS coi canali dominati dai pinguini
 - $B^{O} \rightarrow \phi K^{O}$ (ϕK_{L} nuova)
 - $B^0 \rightarrow K^+ K^- K_5$
 - $B^0 \rightarrow \pi^0 K_S$
 - $B^{O} \rightarrow K^* \gamma$
 - $B^0 \rightarrow f_0(980)K_S$
- Conclusioni

Introduzione

B factory asimmetriche ottimizzate per misure dipendenti dal tempo delle asimmetrie che violano CP nei decadimenti BO in autostati di CP

Luminosità integrate: ~190 fb⁻¹ BaBar e 220 fb⁻¹ BELLE Risultati presentati: 110 (81) fb⁻¹ BaBar e 140 fb⁻¹ BELLE IFAE, TORINO 15 aprile 2004 Lorenzo Vitale 3

Parametrizzazione Asimmetrie CP(t)

Modi di decadimento per misurare sin 2β

 $b \rightarrow c\bar{c}s$ Golden Modes $J/\psi K_{s}, J/\psi K_{L}, J/\psi K^{*}, charmonio : MISURE PRECISIONE$

 $b \rightarrow c c d$ Cabibbo-soppressi con possibile contaminazione diagrammi a pinguino $D^{(*)}D^{(*)}, J/\psi\pi^0$ CONSISTENZA NEL MS

b \rightarrow sss, sdd Dominati dai diagrammi a pinguino $\phi K^{o}, K^{+}K^{-}K_{s}, f^{o}K^{o}, \eta'K^{o}, \pi^{o}K^{o}, K^{*}\gamma$ PIÙ SENSIBILI A NUOVA FISICA

IFAE, TORINO 15 aprile 2004

Decadimenti Vettore-Vettore

 J/ψ K^{*0} e $D^{*+}D^{*-}$ non sono puri autostati CP

Decadimenti Vettore-Vettore con <u>tre</u> onde parziali <u>S</u>, <u>P</u>, <u>D</u>

Ampiezze di trasversità: A_0 , A_{\parallel} (*CP* = +1 pari), A_{\perp} (*CP* = -1 dispari)

Studi CP(t) sono più complicati ...

 \rightarrow Metodo più semplice:

 \rightarrow Definire la frazione CP-dispari R₁ = $|A_1|^2 / (|A_0|^2 + |A_{||}|^2 + |A_1|^2)$

L'asimmetria *CP* diluita dal fattore $K = (1 - 2R_{\perp})$

 \rightarrow Altrimenti usare l'informazione degli angoli:

 \rightarrow 2D: Solo un angolo (trasversità)

 \rightarrow 4D: Tutti gli angoli (angolare completa)

... ma anche ricchi di ulteriori aspetti

Misure CP(t) in $b \rightarrow c\bar{c}s$

IFAE, TORINO 15 aprile 2004

"Golden Modes"

Diagramma(i) pinguino: (possibile piccolo contributo)

- "Golden Modes"
 - Puliti teoricamente
 - Anche sperimentalmente piuttosto puliti
- · Albero e pinguino dominante hanno la stessa fase debole
- In questo caso, $Im(\lambda)$ misura direttamente sin 2β
- Non solo $J/\psi K_s$:
 - Anche $\psi' K_S$, $\chi_{c1} K_S$, $\eta_c K_S$
 - $J/\psi K_L$
 - J/ψ K*0

(CP = -1)(CP = +1)(Mixed CP)

IFAE, TORINO 15 aprile 2004

$sin 2\beta$: risultati

Negli ultimi anni sin 2β misurato con accuratezza crescente nel charmonio

15

BaBar PRL 89, 201802 (2002) 81fb⁻¹ $0.741 \pm 0.067_{(stat)} \pm 0.034_{(syst)}$

MEDIA charmonio HFAG: $sin2\beta = 0.736 \pm 0.049$ BELLE CONF-0353 (LP'03) 140 fb⁻¹ $0.733 \pm 0.057_{(stat)} \pm 0.028_{(syst)}$

limitato ancora da statistica 0.043 non aggiornato da LP2003

Nel piano py una delle 4 soluzioni per β è in buon accordo con le altre misure del triangolo di unitarietà

Novità dal charmonio $B^{O} \rightarrow J/\psi K^{*} (K^{*} \rightarrow K_{S}\pi^{O})$

Si può ridurre ambiguità su β misurando il segno di cos 2β . BaBar: *nuovo metodo* e *prima misura* con eventi $J/\psi K^*$

- Il contenuto *CP* del decadimento *Scalare*→*Vettore Vettore* B^0 → $J/\psi K^{*0}(892)$ é sia pari-dispari
- $\cos 2\beta$ compare dall'interferenza *CP*-pari *CP*-dispari nelle osservabili: $\cos(\delta_{\parallel} - \delta_{\perp}) \cdot \cos 2\beta$

 $\cos(\delta_{\perp}-\delta_{0})\cdot\cos 2\beta$

• $\delta_0, \delta_{||}, \delta_{\perp}$: fasi forti nelle ampiezze di decadimento:

$$A_i = |A_i| e^{i\delta_i} ; i = 0, ||, \bot$$

IFAE, TORINO 15 aprile 2004

Le fasi forti possono essere misurate con tutti i decadimenti neutri e carichi $B \rightarrow J/\psi K^*$, a meno di una *doppia ambiguità*:

$$egin{aligned} &\left\{\!\left(\!\delta_{\scriptscriptstyle \parallel}\!-\!\delta_{\scriptscriptstyle 0}\,
ight)\!
ight,\,\left(\!\delta_{\scriptscriptstyle \perp}\!-\!\delta_{\scriptscriptstyle 0}\,
ight)\!
ight\} \ &\left\{\!-\!\left(\!\delta_{\scriptscriptstyle \parallel}\!-\!\delta_{\scriptscriptstyle 0}\,
ight)\!
ight,\,\,\pi\!-\!\left(\!\delta_{\scriptscriptstyle \perp}\!-\!\delta_{\scriptscriptstyle 0}\,
ight)\!
ight\} \end{aligned}$$

Ambiguità che si può rompere studiando l'intensità relativa onda dominante p e onda s del K* in funzione di $m(K_{S}\pi^{0})$

BaBar: misura del segno di cos 2β

 $\cos 2\beta$ misurato mediante analisi angolare CP(t) del campione $B^0 \rightarrow J/\psi(K_5\pi^0)^{*0}$ (solo 104 eventi taggati in 82 fb⁻¹)

- Il fit con sin 2β libero: $\cos 2\beta = +3.32^{+0.76}_{-0.96}$ (stat) ± 0.27 (syst)

 $\sin 2\beta = -0.10 \pm 0.57$

- Fit con sin 2β = 0.731: cos 2β = +2.72^{+0.50}_{-0.79} ± 0.27

Assumendo che sin 2β e cos 2β vengano dallo stesso angolo 2β , simulando 2000 toy MC:

Si escluderebbe $\cos 2\beta =$

$$(1-\sin^2 2\beta)^{1/2} = -0.68$$

@ 89% CL

IFAE, TORINO 15 aprile 2004

Misure CP(t) in $b \rightarrow c\bar{c}d$

IFAE, TORINO 15 aprile 2004

Modi Cabibbo-soppressi

$$B^0 \rightarrow D^{(*)}D^{(*)} e \ B^0 \rightarrow J/\psi \pi^0$$
:
Cabibbo soppressi livello albero

 $\overline{B}^{0} \left\{ \begin{array}{c} b \\ \overline{d} \end{array} \right\} \begin{array}{c} D^{(*)-} \\ \overline{d} \end{array} \\ \overline{d} \bigg\} \\ \overline{d} \bigg\}$ \\ \overline{d} \bigg\} \\ \overline{d} \bigg] \overline{d} \bigg] \overline{d} \bigg] } \bigg] \\ \overline{d} \bigg] \overline{d} \bigg] } \bigg] \bigg] \overline{d} \bigg] \bigg]

Albero misura sin 2β dalla transizione b \rightarrow ccd (consistenza con J/ ψ K_{s,L})

Pinguini sono previsti O(<10%) nel MS ma potrebbero essere aumentati da nuova fisica

Analisi angolare CP(t) in D*+D*-

 $B^{O} \rightarrow J/\psi \pi^{O}$

Riassunto risultati

Complessivamente in questi modi c'è quindi una discreta consistenza col charmonio

IFAE, TORINO 15 aprile 2004

Lorenzo Vitale

$$=\frac{2\Im\lambda}{1+|\lambda|^2} \qquad C=\frac{1-|\lambda|^2}{1+|\lambda|^2}$$

S

Misure CP(t) in $b \rightarrow s\bar{s}s$ (s $\bar{d}d$)

IFAE, TORINO 15 aprile 2004

Modi dominati dai pinguini

• I modi dominati dai pinguini, ad es. $B^{O} \rightarrow \phi K^{O}$,

sono sensibili a nuova fisica attraverso il loop.

 Anche qui si misura un valore sin2β^{eff} che può differire da sin2β nel MS al più di 0.2-0.4, a seconda del modo

D.London and A.Soni, PLB 407,61-65 (1997). Y.Grossman, Z.Ligeti,Y.Nir, H.Quinn, PRD68,015004 (2003). M.Gronau, Y.Grossman, J.Rosner, PLB579,331-339 (2004).

IFAE, TORINO 15 aprile 2004

In visione "naive":

- *C*=0

- S=- η_f .sin 2β
- GRANDE INTERESSE HANNO DESTATO RECENTEMENTE LE MISURE PUBBLICATE DA BELLE

Risultati BELLE, PRL 91, 261602 (2003)

BaBar $B^{O} \rightarrow \phi K_{S'} B^{O} \rightarrow \phi K_{L}$ (nuovo)

20

BaBar $B^0 \rightarrow K^+ K^- K_S : B^+ \rightarrow K^+ K_S K_S$

• Decadimento a 3 corpi $B^0 \rightarrow K^+ K^- K_S$

• Si misurano anche i BR per attraverso le relazioni di simmetria di isospin [Belle PRD69, 012001 (2004)]: 🖑

$$f_{even} = \frac{2\Gamma(B^+ \to K^+ K_S^0 K_S^0)}{\Gamma(B^0 \to K^+ K^- K^0)}$$

IFAE, TORINO 15 aprile 2004

$CP(t) \operatorname{con} B \to KKK_S$

- Determinazione f_{even} :
 - Br($B^{O} \rightarrow K^{+} K^{-} K^{O}$)= (23.8±2.0±1.6)×10⁻⁶
 - $Br(B^{+} \rightarrow K^{+}K_{S}K_{S})$ = (10.7±1.2±1.0)×10⁻⁶
 - f_{even} =0.98±0.15±0.04
 - Confermato anche dalla distribuzione angolare;
- Quindi S~-sin2 β ;

$$S_{K^+K^-K_s^0} = -0.56 \pm 0.25(\text{stat}) \pm 0.04(\text{syst})_{-0.17}^{+0}(f_{even})$$
$$C_{K^+K^-K_s^0} = -0.10 \pm 0.19(\text{stat}) \pm 0.09(\text{syst})$$

BaBar $B^0 \rightarrow \pi^0 K_S$

- Misura S~sin2β nel MS;
- La direzione del K_S usata per determinare il vertice del B⁰:
 - Vincolo in x-y del beam-spot;

$$C_{K_{S}^{0}\pi^{0}} = 0.40^{+0.27}_{-0.28}(\text{stat}) \pm 0.10(\text{syst})$$

IFAE, TORINO 15 aprile 2004 Lorenzo Vitale

BaBar $B^{O} \rightarrow K^{*} \gamma (K^{*} \rightarrow K_{S} \pi^{O})$

- ·Quasi self-tagging grazie all'elicità del fotone
- •Misura S~O ($2m_s/m_b sin 2\beta$) nel MS
- Però nuova fisica potrebbe aumentare il rate di decadimenti ad una data elicità e quindi S≠0
- •Tecnica ricostruzione vertice simile a $B^0 \rightarrow \pi^0 K_S$ validata in entrambe le analisi con

$$-B^{O} \rightarrow J/\psi K_{S} e B^{+} \rightarrow \pi^{+} K_{S}$$
, ignorando J/ψ o π^{+}

-Vita media *B*⁰

$$S = 0.25 \pm 0.63_{(stat)} \pm 0.14_{(syst)}$$
$$C = -0.56 \pm 0.32_{(stat)} \pm 0.09_{(syst)}$$

- Studi recenti [hep-ph/0011191 (2000)] sulla struttura del mesone scalare f₀(980) favoriscono stato qq.
- Decadimento potrebbe essere pinguino $b \rightarrow s\bar{s}s$ dato che:
 - $s\overline{s}$ consistente; $b \rightarrow u\overline{u}s$ albero doppiamente Cabbibo soppresso rispetto al leading penguin.
- In questo caso il decadimento misura: $S_{f_0K_s^0} \cong -\sin 2\beta$

Analisi Quasi 2-body : Si taglia sul Dalitz plot per ridurre contributi da $\rho_0 e f_0(1370)$

CP fit of $B^0 \rightarrow f_0(980)K_S$

26

Riassumendo

IFAE, TORINO 15 aprile 2004

Lorenzo Vitale

27

CONCLUSIONI

- $sin 2\beta$ misurato con precisione nel charmonio
- Segno di β da J/ ψ K* (K* \rightarrow K_S π^{0})
- Molte misure nuove
- Risultati consistenti per sin 2β nei canali Cabibbo soppressi e dominati dai pinguini
- Con la possibile eccezione di
 - Misura di BELLE in $B^0 \rightarrow \phi K_S$
 - Media delle misure non charmonio