B Mixing, Lifetimes, Lifetime Differences and CP/T/CPT Violation at the B factories

Maria Alessandra Mazzoni INFN Roma

Incontri di Fisica delle Alte Energie Torino, 14-16 Aprile 2004

Flavor mixing in the B_d system

Mass states B_1 , B_H superposition of B^0 and B^0 flavor states:

Oscillation frequency

Average lifetime

 $\Delta m = m_H - m_L \approx 0.5 \text{ ps}^{-1}$ $1/\Gamma \approx 1.6 \text{ ps}$

Lifetime difference

 $\Delta \Gamma = \Gamma_{\rm H} - \Gamma_{\rm L} ~\ll~ \Gamma$

Lifetime

Lifetime ratios of hadrons with beauty can be computed "from first principles" Experiments provide important test of HQE

Lifetime difference $\Delta\Gamma$

Standard Model: small
$$\frac{\Delta\Gamma}{\Gamma} \approx -0.3\%$$

Usually assumed to be 0

CPT violation

$$\operatorname{Prob}\left(B^{0} \to B^{0}, t\right) \neq \operatorname{Prob}\left(\overline{B}^{0} \to \overline{B}^{0}, t\right) \quad \longrightarrow \quad \operatorname{CP} \text{ and } \operatorname{CPT} \text{ violation}$$

Violated in mixing if
$$z \equiv 2 \frac{\delta M - (i/2)\delta\Gamma}{\Delta m - (i/2)\Delta\Gamma} \neq 0$$
 $2 \ \delta M \equiv M_{11} - M_{22}$
 $2 \ \delta\Gamma \equiv \Gamma_{11} - \Gamma_{22}$

Locality \Rightarrow CPT invariance Standard Model : 0

CP/T violation

Prob
$$(B^0 \to \overline{B}^0, t) \neq \text{Prob}(\overline{B}^0 \to B^0, t)$$

 \checkmark CP and T violation
Violated in mixing if $\left|\frac{q}{p}\right| \neq 1$
Standard Model: small $\left|\frac{q}{p}\right| - 1 \approx 5 \times 10^{-4}$

B factories, accelerators

9 GeV e^- × 3.1 GeV e^+ Y(4S) boost $\beta \gamma = 0.55$

8 GeV $e^- \times$ 3.5 GeV e^+ Y(4S) boost $\beta \gamma = 0.43$

2004/04/01 09.19

B factories, detectors: BaBar

B factories, detectors: Belle

Coherent Time Evolution at the Y(4S)

Time dependent B decay rates: naïve mixing picture

Differential event rate, as a function of the difference between the proper decay times of the two B mesons in the final state

Fully reconstructed $B^0 \rightarrow D^{(*)} \pi^+ / \rho^+$

use of same variables ΔE and m_{ES}

Other side tagged using flavor tagging algorithm (multidimensional likelihood)

Partial reconstruction method:

- D^{* -} information from the soft π of D^{* -} \rightarrow $\overline{D}{}^{0}\pi$ -
- $D^{*\,-}$ combined with fast π from $B\to D^{*}\pi$ and beam information

high momentum lepton on the tag side

$B^0\overline{B}^0$ mixing with D*lv - BaBar

Reconstruction of $B^0 \to D^* l \nu$

with $D^{*-} \rightarrow \overline{D}{}^0\pi^-$ and $\overline{D}{}^0 \rightarrow K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$, $K_s\pi^+\pi^-$

Combine with lepton candidate (p* > 1.2 GeV) Require consistency of kinematics (angles, missing v) Simultaneus measurement of ∆m_d and lifetime !

Other side tagged using flavor tagging algorithm (neural network)

Larger systematics associated with:

Background modeling and fit bias

Reconstruction of $B^0 \rightarrow D^* I \nu$ with $D^{*-} \rightarrow \overline{D}{}^0 \pi^{-}$ and $\overline{D}{}^0 \rightarrow K^+ \pi^-, K^+ \pi^- \pi^0, K^+ \pi^- \pi^+ \pi^-$

similar analysis, but no lifetime fit

Other side tagged using flavor tagging algorithm (multidimensional likelihood)

Larger systematics associated with:

- At resolution and range
- Background

29 fb⁻¹

 $\Delta m_d = 0.494 \pm 0.012 \pm 0.015 \text{ ps}^{-1}$

PRL 89[2002]

Events with 2 high momentum leptons high statistics but charged B background

B flavor tagged by the lepton sign Charm decay background

Decay vertex from lepton tacks – IP

Larger systematics associated with:

- B lifetimes
- At resolution

 $\Delta m_d = 0.493 \pm 0.012 \pm 0.009 \text{ ps}^{-1}$

PRL 88[2002]

Events with 2 high momentum leptons

Similar analysis + limits on CPT violation parameters in mixing

Larger systematics associated with:

- B lifetimes
- Detector response

Most precise single measurement ! $\sigma_{syst} > \sigma_{stat}$ $B^0\overline{B}^0$ mixing

$\Delta m_{\rm d}$ at the B factories

$\Delta m_{\rm d}$, all experiments

Larger systematics associated with:

- Background shape
- MC statistics
- At resolution (cancels in ratio)

Fully reconstructed $B^0 \rightarrow D^{(*)}\pi^+/\rho^+/a_1^+$, $J/\psi K_s$, $J/\psi K^{*0}$ $B^+ \rightarrow \overline{D}{}^0\pi^+, J/\psi K^+, \psi(2S)K^+$

Larger systematics associated with:

- Background shape
- MC statistics

Reconstruction of $B^0 \rightarrow D^* l \nu$ with $D^{*-} \rightarrow \overline{D}{}^0 \pi^-$ and $\overline{D}{}^0 \rightarrow K^+ \pi^-, K^+ \pi^- \pi^0, K^+ \pi^- \pi^+ \pi^-, K_s \pi^+ \pi^-$

Larger systematics associated with:

Background modeling and fit bias

 $B^0 \rightarrow D^{*-}l^+\nu$ with $D^{*-} \rightarrow D^0\pi^-$ Reconstruct lepton and soft π only

 $p_{D^*} = \alpha p_{\pi} + \beta$ π in a small cone around D* direction, α and β from simulation

 $M_{\nu}^{2} = (p_{B^{0}} - p_{D^{*}} - p_{I})^{2} \approx 0$ Missing neutrino

Larger systematics associated with:

- Δt resolution ٠
- D⁰ track bias

Entries / 0.2 (GeV²/c⁴) 000 000

20.7 fb⁻¹

data

 \square B⁰ signal B

continuum BB comb.

side band

signal

Other lifetime measurements in BaBar

Partially reconstructed $B^0 \rightarrow D^{*-}\pi^+$ and $B^0 \rightarrow D^{*-}\rho^+$

Decay Time Difference (ps)

B⁰ and B⁺ lifetimes

Again, the differential event rate as a function of the difference between the proper decay times of the two B mesons in the final state

 $\Delta\Gamma$ = 0, no CP/T/CPT violation

$$\frac{d}{d\Delta t} \mathcal{N}(\Upsilon(4S) \to B\overline{B} \to f_{\text{tag}}, f_{\text{rec}}) \propto \frac{1}{\Gamma} e^{-\Gamma|\Delta t|} \left\{ 1 \pm \cos\left(\Delta m \,\Delta t\right) \right\}$$

B factories precision measurements \Rightarrow *correction to naïve mixing picture*

CP,T,CPT violation, $\Delta\Gamma \neq 0$: effect and magnitude on B decay rate measurement similar combined analysis to disentangle effects

B decay into CP eigenstates

$$\begin{aligned} \frac{d}{d\Delta t} \mathcal{N}(\Upsilon(4S) \to B\overline{B} \to f_{\text{tag}}, f_{\text{rec}}) \propto \\ \frac{1}{\Gamma} e^{-\Gamma|\Delta t|} \left\{ \cosh\left(\frac{\Delta\Gamma\Delta t}{2}\right) \pm \sqrt{1 - T_{f_{\text{tag}}, f_{\text{rec}}}^2} \sinh\left(\frac{\Delta\Gamma\Delta t}{2}\right) \right\} = 1 \text{ if } \Delta\Gamma = 0 \\ - C_{f_{\text{tag}}, f_{\text{rec}}} \times \cos(\Delta m \,\Delta t) + S_{f_{\text{tag}}, f_{\text{rec}}} \times \sin(\Delta m \,\Delta t) \end{aligned} \end{aligned}$$

with
$$C_{f_{\text{tag}},f_{\text{rec}}} = \frac{|a_m|^2 - |a_u|^2}{|a_m|^2 + |a_u|^2} \qquad S_{f_{\text{tag}},f_{\text{rec}}} = \frac{2 \operatorname{Im}(a_u^* a_m)}{|a_m|^2 + |a_u|^2} \qquad \text{Different expression}$$
and
$$T_{f_{\text{tag}},f_{\text{rec}}}^2 \equiv C_{f_{\text{tag}},f_{\text{rec}}}^2 + S_{f_{\text{tag}},f_{\text{rec}}}^2 \le 1$$

Allow
CP/CPT
violation
$$a_{u} \equiv \overline{A}_{f_{tag}}A_{f_{rec}} - A_{f_{tag}}\overline{A}_{f_{rec}}$$

$$a_{m} \equiv \sqrt{1-z^{2}} \left(\frac{q}{p} \overline{A}_{f_{tag}}\overline{A}_{f_{rec}} - \frac{p}{q} A_{f_{tag}}A_{f_{rec}}\right) + z \left(\overline{A}_{f_{tag}}A_{f_{rec}} + A_{f_{tag}}\overline{A}_{f_{rec}}\right)$$

$$= 1 \text{ w/o CP/CPT violation}$$
Absent w/o CP/CPT violation

If $z \neq 0$ Prob(B⁰ \rightarrow B⁰,t) \neq Prob($\overline{B}^{0} \rightarrow \overline{B}^{0}$,t)

Effect of $\Delta\Gamma \neq 0$, CP/T/CPT violation on B decay rate

<mark>28</mark>

82 fb⁻¹ – 88 million BB pairs

 $\frac{d}{d\Delta t} \underbrace{\mathcal{N}(\Upsilon(4S) \to B\overline{B} \to f_{\text{tag}}, f_{\text{rec}})}_{\mathbf{Must model:}} \otimes \underbrace{\mathbf{Detector response}(\Delta t, f_{tag}, f_{rec})}_{\mathbf{Must model:}}$

Must take into account %-level physics effects:

- Possible direct CP violation in the CP eigenstate sample (λ_{CP})
- Correlation between reco B and tag B via interference between CKM allowed and doubly-CKM suppressed decays

- Incorrect assignments of the flavour tagging algorithm
- Δt resolution that is comparable to the B lifetime and asymmetric for positive and negative Δt
- possible asymmetries in detector response for positive and negative particles

Limits on $\Delta\Gamma$ and search for CP,T,CPT violation in mixing – BaBar – results

CPT violation parameters in mixing – measured with oscillation frequency - halysis assumes $\Delta\Gamma$ and CP violating effects are negligibly small

 $Im(z) = -0.03 \pm 0.01 \pm 0.03$ $Re(z) = 0.00 \pm 0.12 \pm 0.02$

PR D 67[2003]

Summary

- Δm_d very well measured theoretically limited
- B⁰ and B⁺ lifetimes well measured ratio in good agreement with predictions
- Improved limit on $\Delta\Gamma/\Gamma$
 - $\Delta\Gamma/\Gamma < 8\%$ (90% C.L.)
 - $\Delta\Gamma/\Gamma < 20$ % (90% C.L., PDG 2003 (DELPHI))
- Measurement of CP and T violation (|q/p|) consistent with Standard Model expectation
- Test of CPT invariance outside K⁰ system

 BaBar (2003): 	$Im(z) = 0.038 \pm 0.029 \pm 0.025$ Re(z) = 0.014 \pm 0.035 \pm 0.034
 Belle dilepton (2002) 	$Im(z) = -0.03 \pm 0.01 \pm 0.03$ Re(z) = 0.00 ± 0.12 ± 0.02
– OPAL (1997)	$Im(z) = 0.040 \pm 0.032 \pm 0.012$

