b(c) physics at the Tevatron collider

Giovanni Punzi

Scuola Normale Superiore & INFN - Pisa

IFAE - Torino 14/4/04

Tevatron performance

~300 pb⁻¹ on tape

~100-200 pb⁻¹ used for analysis so far

...now integrating data at the rate of \sim 300pb⁻¹/year. Plan is 4 to 8.5 fb⁻¹ Large production a strong point of B program @TeV

The CDF & DO Detectors in Run-II

CDF tracking/PID performance

DO performance

 $\sigma(DCA) \approx 53 \ \mu m @ P_T = 1 \ GeV$ and $\approx 15 \ \mu m @ higher P_T$

K/π separation for P_{tot} < 400 MeV p/π separation for P_{tot} <700 MeV NOT yet used for PID

Triggering bs' (and cs') @Tevatron

conventional	new approach	
<u>Di-lepton</u>	electron or μ and	Two displaced
CDF and DØ	displaced track	<u>tracks</u>
$B \longrightarrow charmonium$	CDF only	CDF only
Rare $B \longrightarrow \mu\mu$	Semileptonic decays	n-body hadronic B
Two muons with:	Electron (μ) with:	Two tracks with:
p _T > 1.5 GeV η < 1	p _T > 4 (1.5) GeV η < 1	p _T > 2.0 GeV
p _T > 2.5-4.5 GeV η <2	and one track with:	Σp _T > 5.5 GeV
Single-muon	$p_{T} > 2.0 \text{ GeV}$ IP > 120 μm	IP > 120 (100) μm
DØ only	Both experiment have a	3-level trigger,
Semileptonic decays	and B takes a good fraction of resources.	

one muon with:

 $p_{T} > 2 - 4 \text{ GeV} |\eta| < 2$

Trigger selection determines the physics.

Competitive measurements for B_d and B^+ :

 $M(B_d) = 5280.30 \pm 0.92 \pm 0.96 \text{ MeV/}c^2$ $M(B^+) = 5279.32 \pm 0.68 \pm 0.94 \text{ MeV/}c^2$

World's best measurements for B_s and Λ_b :

$$M(B_s) = 5365.50 \pm 1.29 \pm 0.94 \text{ MeV/c}^2$$

 $M(\Lambda_b) = 5620.4 \pm 1.6 \pm 1.2 \text{ MeV/c}^2$

All use J/psi mass as reference

Exclusive Bu, Bd lifetimes

Exclusive $B_s \rightarrow J/\psi \phi$ lifetime (Unique to Tevatron)

 $\tau(Bs)/\tau(B^0) = 0.88 \pm 0.11(stat)$ With more statistics: Angular analysis measures $\Delta\Gamma_s = B_s^H - B_s^L$

> Large CP asymmetry (measures phase of V_{ts}) is a signal of new physics (requires $\Delta m_s t$)

B Lifetime summary

Lifetime, ps

B_s Lifetime Difference: $\Delta\Gamma_s$

- $\Delta\Gamma_s/\Delta M_s$ in SM does not depend on CKM parameters
 - $\Delta\Gamma_s$ determines ΔM_s up to QCD uncertainties (~20%)
 - Large ΔM_s (hard to measure) \rightarrow Large $\Delta \Gamma_s$ (easy to measure) \rightarrow complementarity
- Several methods available at Tevatron RunII:

B_s→ J/ψφ: Angular analysis to separate CP even/odd components ~ 10,000 events in 6.5 fb⁻¹ $\sigma(\Delta\Gamma/\Gamma)$ ~0.01 0.03 • Theory: $\frac{\Delta\Gamma_s}{\Gamma_s} = 7\% \pm 4\%$ • Exp: $\frac{\Delta\Gamma_s}{\Gamma_s} < 0.31$, 95% CL • $\frac{\Delta\Gamma_s}{\Delta m_s} = \frac{\pi}{2} \frac{m_b^2}{m_W^2} \left| \frac{V_{cb}V_{cs}}{V_{ts}V_{tb}} \right|^2 \times \text{QCD}$

Hadronic modes (being evaluated):

 $B_s \rightarrow K+K-$

No angular analysis needed ~ 10,000 eventi in 6.5 fb⁻¹ (see Bhh below)

$$B_s \rightarrow D_s \pi / D_s D_s$$
:

Fit 2 exponential to known mixture of states (ex. $B_s \rightarrow D_s \pi$, $B_s \rightarrow D_s |v$) Compare with CP eigenstate (ex. $B_s \rightarrow D_s D_s$) 18

B⁺/B⁰ from lepton+displaced track

High statistics semileptonic B samples Excellent calibration samples for B^+/B^0 lifetime, tagging and B^0 mixing $B \rightarrow ID^0X (D^0 \rightarrow K\pi)$: ~41,800 events $B \rightarrow ID^{*+}X (D^{*+} \rightarrow D^0\pi)$: ~8,400 events $B \rightarrow ID^+X (D^+ \rightarrow K\pi\pi)$: ~18,700 events CDF runII yields significantly larger: lower lepton pt threshold possible thanks to i.p trigger

B Flavor Tagging

<u>OST</u> (opposite side tagging):

B's produced in pairs → tag flavor of opposite B 2. Decay length JETQ: sign of the weighted average charge of opposite B-Jet

SLT: identify the soft lepton from semileptonic decay of opposite B
<u>SST</u> (same side tagging):
B⁰ (B⁰) is likely to be accompanied by a π+ (π-)
Search for the track with minimum P_T^{REL}

Kaon taggers (new in CDF): OST (K from b→c→s transition) SST (K from fragmentation)

•Evaluation in progress, but not expecting more than 5-10%
•Learning process in runII no faster than runI...

ε D² [%]	CDF	DØ
Soft muon	0.7 ± 0.1	1.0 ± 0.2
Soft electron	in progress	in progress
Jet charge	in progress	3.3 ± 1.7
Same side	1.9 ± 0.9	5.5 ± 2.0
Opp. side kaon	in progress	N/A
Same side kaon	in progress	N/A

Bd oscillations

Preliminary results:

 Δm_d = 0.506 ± 0.055 (stat) ± 0.049 (syst) ps⁻¹

Syst. dominated by uncertainty on $\mu\text{+}D\text{*-}$ yield per VPDL bin.

Consistent with world average: $0.502 \pm 0.007 \text{ ps}^{-1}$

Tagging efficiency:

$$\varepsilon = \frac{N_{\rm R} + N_{\rm W}}{N_{\rm R} + N_{\rm W} + N_{\rm notag}}$$
$$= 4.76 \pm 0.19\%$$

Tagging purity:

$$\kappa = \frac{N_{\rm R}}{N_{\rm R} + N_{\rm W}}$$
$$= 73.0 \pm 2.1\%$$

Hadronic modes

Online IP from SVT: Unique to CDF hadronic B trigger

Huge Charm samples from impact parameter trigger

Cabibbo-suppressed decays of D⁰

 $\Gamma(D^{0} \rightarrow KK) / \Gamma(D^{0} \rightarrow K\pi) = 9.96 \pm 0.11 \pm 0.12\%$ $\Gamma(D^{0} \rightarrow \pi\pi) / \Gamma(D^{0} \rightarrow K\pi) = 3.608 \pm 0.054 \pm 0.012\%$

compare with FOCUS (2003) $\Gamma(D^0 \rightarrow KK)/\Gamma(D^0 \rightarrow K\pi) = 9.93 \pm 0.14 \pm 0.14\%$ $\Gamma(D^0 \rightarrow \pi\pi)/\Gamma(D^0 \rightarrow K\pi) = 3.53 \pm 0.12 \pm 0.06\%$

CP asymmetry: tagging the soft π with D* decays.

$$A(D^{0} \rightarrow KK) = 2.0 \pm 1.2 \pm 0.6 \%$$

 $A(D^{0} \rightarrow \pi\pi) = 1.0 \pm 1.2 \pm 0.6 \%$

World-class Charm samples in CDF runII

	2 fb ⁻¹	6.5 fb ⁻¹
$D^0 \rightarrow K\pi$	24M*	78M*
D ⁰ →Кπππ	4M*	13M*
$D^0 \rightarrow KK$	2.5M*	8.5M*
$D^0 \rightarrow \pi\pi$	0.7M*	2.3M*
D±→Кππ	18M	58M
$D^+s \rightarrow KK\pi$	1M	6.5M
$\Lambda_c \rightarrow p\pi K$	18K	59K

 $* \times 1/3$ with D* tag

CP asymmetries at 0.1% levelD mixing

$D\pi$ and DK exclusive modes

Good yields at the Tevatron - DK-D π separation study has been performed - perspectives for a good measurement of gamma

Hadronic B_s for mixing at high xs

"Golden channel": $B_s^0 \rightarrow D_s^- \pi^+ \rightarrow [\phi \pi^-] \pi^+ \rightarrow [[K^+K^-]\pi^-] \pi^+$ Best proper time resolution, can resolve fast oscillations.

BR measurement:

$$\frac{f_s \cdot BR(B_s^0 \to D_s^- \pi^+)}{f_d \cdot BR(B_d^0 \to D^- \pi^+)} = 0.35 \pm 0.05(stat) \pm 0.04(syst) \pm 0.09(BR)$$

CP asymmetry in ${\sf B}^0{}_{\rm s} \to J/\psi \phi$

After xs measurement: CP asymmetry in $J/\psi \phi$ measures weak phase of V_{ts} (angle $\phi_s = 2\beta_s$) Also plan to look at $B_s \rightarrow J/\psi \eta^{()}$ Expected to be small: $\sin(2\beta_s) \approx O(\lambda^2) \approx 0.03$

Complicated analysis: requires x_s and angular analysis to disentangle CP even/odd final states <u>CDF reach</u>: σ(sin(2 β_s)) ≈0.1 with 2fb⁻¹ (≈0.06 with 8fb⁻¹) If asymmetry observed with 2fb⁻¹ → signal for NEW Physics CHARMLESS Hadronic modes

$B \rightarrow h^+h^-$ decays at the Tevatron

Reconstruction of Charmless 2-body

Separation of $B^0 \rightarrow h^+h^-$ contributions

Overall separation power $\sigma(CDF) = \sigma(ideal)/0.6$ $\sigma(Babar) = \sigma(ideal)/0.8$ (hep-ex/0207055)

$B \rightarrow h^+h^{-1}$ results (LP03, 65 pb⁻¹)

 $BR(Bd \rightarrow \pi\pi)/BR(Bd \rightarrow K\pi) = 0.26 \pm 0.11(\text{stat}) \pm 0.06(\text{syst})$

Direct ACP(Bd \rightarrow K π) = 0.02 ± 0.15(stat) ± 0.02(syst)

Consistent with B-factories results (0.25±0.06)

 $fs \cdot BR(Bs \rightarrow KK)/fd \cdot BR(Bd \rightarrow K\pi) = 0.74 \pm 0.20(stat) \pm 0.22(syst)$

First evidence of Bs \rightarrow K+K- (CDF's largest fully reconstructed Bs sample!)

Update on 185pb-1 coming out soon x4 statistics and smaller syst (mainly dEdx)

Resolutions with current 180pb-1 sample

- · Acp(Kπ) to 7%
- BR(BsKK) to 15%
- Yields: 130pb-1 CDF = 80fb-1 Babar

Risoluzioni attese	180pb-1	65pb-1
Bdpipi	± 0.024	± 0.05
BdKpi+barBdKpi	± 0.028	± 0.05
BsKpi+barBsKpi	± 0.024	± 0.05
BsKK	± 0.026	± 0.06
ACP	± 0.071	± 0.14
BsKK/(BdKpi+barBdKpi)	± 0.053	± 0.13
Bdpipi/(BdKpi+barBdKpi)	± 0.046	± 0.10

$B \rightarrow h^+h'^-$ future measurements

Mode	Yield 2 fb^{-1}	Yield 3.5 fb^{-1}
$B_d \to K\pi$	6700	11,725
$B_d \to \pi \pi$	1770	3097
$B_s \rightarrow KK$	4040	7070
$B_s \to K\pi$	1070	1870

•B_s \rightarrow K π BR/Acp measurement •Limits on B_s \rightarrow $\pi\pi$, B_d \rightarrow KK •Lifetime in B_s \rightarrow KK : $\Delta\Gamma_s$ •ACP in B_d \rightarrow $\pi\pi$, B_s \rightarrow KK

BR and A_{CP} in Charmless Bd,Bs

- QCD Factorization now provides predictions for PP, PV and VV 2body charmless BR and ACP. Fits to experimental data allow extracting angle γ and other interesting parameters.
 - D.Du, hep/ph/0311135
 - N. deGroot et al., hep-ph/0305263
 - Benecke and Neubert, Nucl. Phys. B651,225(2003)
 - D.Du et al, hep-ph/0211154 (Bs->PP, PV)
 - Y.Yang et al, hep-ph/0309136 (Bs->VV)
- Lots of unseen channels, accessible to Tevatron experiments

	Decay	BR(10 ⁻⁶)
p←q	Κ * ⁰ ρ ⁰	1.95
	K*+K*-	2.10
b→s	$\rho^0\phi$	1.67
. <u>5</u>	K*0K*0	3.72
pengu	Κ *0φ	0.2
Pure	φφ	36.8

All-charged modes only

$$B^+ \rightarrow \phi K^+ \rightarrow [K^+K^-]K^+$$

$$\frac{BR(B^{\pm} \to \phi K^{\pm})}{BR(B^{\pm} \to J/\psi K^{\pm})} = [6.8 \pm 2.1(stat) \pm 0.7(syst)] \cdot 10^{-3}$$

Next:

Measure direct A_{CP} $B^{0}_{d} \rightarrow \phi K^{*}$ and c.c. $B^{0}_{d} \rightarrow \phi K^{0}_{s}$ and c.c. ...and A_{CP} in baryons (SM expects ~10% CPV) $\Lambda_{b} \rightarrow \phi \Lambda$ and c.c. $\Lambda_{b} \rightarrow pK^{-}/p\pi^{-}$ and c.c.

NEW: Observation of $B_s \rightarrow \phi \phi$

B->sss process, like Bd $\rightarrow \phi Ks$, Bd $\rightarrow \phi K^*$

 $BR_{B_s \to \phi\phi} = (1.4 \pm 0.6(stat.) \pm 0.2(syst.) \pm 0.5(BRs)) \cdot 10^{-5}$ (Exbected 3.98 10-2)

Blind analysis, optimized according to hep-physics/0308063 With more statistics, can get larger yields by looser cuts FUTURE: Angular analysis

Flavor Changing Neutral Currents in $D^0 \rightarrow \mu^+ \mu^-$

FROM the <u>HADRONIC</u> TRIGGER, not the MUON TRIGGER !!

- Look for FCNC in the decay $D^0 \rightarrow \mu^+ \mu^-$.
- SM prediction ~10⁻¹³.
- Normalize to D⁰→ππ cancels out various normalizations and reduce acceptance effects.
- Blind analysis. Optimize cuts on $\pi\pi$ sample.
- Push current limit downward by ~2.

 $\frac{BR(D^{0} \to \mu\mu)}{BR(D^{0} \to \pi\pi)} \leq \frac{N_{CL}(D^{0} \to \mu\mu)}{N(D^{0} \to \pi\pi)} \frac{\varepsilon(D^{0} \to \pi\pi)}{\varepsilon(D^{0} \to \mu\mu)}$ **CDF Run II Preliminary** events/MeV $D^0 \rightarrow \mu^+ \mu^-$ Search 0 events in the $\pm 2\sigma$ search window 2 0 1.8 1.85 1.9 1.95 M.... (GeV) $(PDG 90\%CL: < 4.1 \times 10^{-6})$

 $BR(D^0 \to \mu\mu) \le 2.4 \text{ x } 10^{-6} \text{ at } 90\% \text{ CL}$

Rare decays expected in runII: ~100 $D^{\pm} \rightarrow \pi^{\pm} \mu \mu$

Rare decays: $B_{d(s)} \rightarrow \mu^+ \mu^-$

Standard Model predicts $BR(B_s \rightarrow \mu^+\mu^-) = (3.8 \pm 1.0) \times 10^{-9}$ Several SM extensions predict an enhancement by 1 to 3 orders of magnitude, no excess already constrains several SUSY models

"Blind" analysis: cuts were optimized before looking at the signal mass region

Rare decays: $B_{d(s)} \rightarrow \mu^+\mu^-$

Conclusions

- B physics at Tevatron is kicking in: machine is starting to give yields
- Good results already on FCNC, Charm physics, charmless modes.
- A plethora of new Bs measurements coming.
- Bs mixing on the radar screen, will require statistics and patient tuning of flavor tagging
- Expect from Tevatron a significant contribution to CKM understanding