CALICE ECAL Readout Status

Paul Dauncey

For the CALICE-UK electronics group:

A. Baird, D. Bowerman, P. Dauncey, C. Fry,R. Halsall, D. Mercer, M. Postranecky,M.Warren, O. Zorba

Readout electronics overview

CALICE ECAL has 30 layers, 18×18 channels/layer, 9720 total

- Each gives analogue signal, 14-bit dynamic range required
- Very-front-end (VFE) ASIC (FLC_PHY from LAL-Orsay) multiplexes 18 channels to one output line
- VFE-PCB handles up to 12 VFEs (216 channels)
- Cables from VFE-PCBs go directly to UK VME readout boards, called Calice Ecal Readout Cards (CERCs)

CERC features

- Based on CMS silicon tracker readout (FED) board
 - Reuse some firmware from this board
- Dual 16-bit ADCs and 16-bit DAC
 - DAC able to be fed back for internal as well as front end calibration
 - ADC 500kHz; takes $\sim 80 \mu s$ to read and digitise event data from VFE-PCB
- No data reduction in readout board
 - ECAL event size: 5 kBytes per board, 30 kBytes total per event
- On-board buffer memory; 8 MBytes
 - No buffering available in ECAL front end; receive data for every trigger
 - Memory allows up to $\sim 1.6k$ event buffer on readout board during beam spill
- Large jumper array behind input connectors
 - Can select different signal I/O to and from connectors
 - Reroute signals to ADCs; one full or two half-full VFE-PCBs for each input
 - Bypass ADCs; purely digital I/O

CERC overview

- Eight Front End (FE) FPGAs control all signals to front end electronics via front panel input connectors
- Back End (BE) FPGA gathers and buffers all event data from FE and provides interface to VME
- Trigger logic in BE for timing and backplane distribution; only active in one board
- Each input is one full or two half-full VFE-PCBs; need 45 inputs = 6 CERCs

CERC status

- Prototype design completed last summer
- Two prototype boards fabricated in November
- Currently under tests with a prototype VFE-PCB in Ecole Polytechnique
- Further tests with final version of VFE-PCB in May
- CERC final production in July

Paul Dauncey - CALICE Readout

Test setup

- Final path for data has several complex steps
 - FE digitises ADC data for each trigger and stores in FIFO in FE
 - Automatically transferred to 8MByte memory
 - Memory read from VME when bandwidth available
- Needs data transfer, memory control and VME interface
 - BE FPGA firmware not yet functional
 - 8MByte memory components delayed in delivery; not yet mounted
 - Aiming for end of June for all this to be working
- Backup for current tests
 - Implement simple RS232 interface from PC to BE and hence to FEs
 - RS232 reads FE FIFO one word at a time directly to PC
 - 8MByte memories bypassed, must read each event before next trigger
 - Rate is slow; ~1Hz of events, but sufficient for cosmics ~0.1Hz
- Analogue parts (ADC, DAC) operated as for final system

• Noise, dynamic range, etc, measurements reliable LCWS04 - 20 Apr 2004 Paul Dauncey - CALICE Readout

Test setup data paths

Firmware functional status

- RS232 path working
 - Read and write configuration data to RAMs in FEs
 - Read and write fake event to RAMs in FEs
 - Read back fake event via FIFO on trigger
- Trigger input working
 - Can fire trigger from BE with RS232 command
 - Can send trigger as LVDS signal on spare backplane pins to BE
 - Latter acts as external cosmic trigger path for VFE tests
- ADC readout and DAC control working
 - ADC can be read, DAC can be set
 - DAC can be looped back to ADC internally and through front panel
 - All VFE-PCB and ADC timing control software configurable
 - ADC data stored in FIFO and read through RS232

DAC internal loopback path

- ADC has two inputs per channel; selected in configuration
 - DAC feeds directly into one; "internal" loopback
- Differential analogue path only ~1cm and entirely tracked on PCB
 - Expect minimal noise
- Scan DAC and check linearity of ADC response
 - Intrinsic CERC performance, not due to external electronics, etc.

DAC internal loopback tests

- Plot ADC vs DAC setting
 - Good linearity over most of the range
 - DAC saturation seen in lowest 1% of range (not due to ADC!)
 - Mismatch of DAC range to ADC; only covers ¼ of ADC range (0 to ~15k for ADC range of ±32k)

count for all 96 channels

LCWS04 - 20 Apr 2004

Paul Dauncey - CALICE Readout

DAC internal loopback tests (cont)

- Fit over range above non-linear region
 - Simple straight line fit; no higher terms included
- Residuals from fit show various structures
 - Example channels shown
 - Typically under 2 ADC counts

- Intrinsic board performance very good
 - Linear to 0.01% over ADC range testable
 - Gains uniform to 1% over this range

Strontium source tests

- Need to determine timing of sample-and-hold signal to VFE-PCB
 - Must hold signal at shaping peak to maximum signal and minimise noise
- Hold delay configurable in software on CERC
 - Counts of 160MHz clock; 6.25ns steps
 - Some latency due to trigger logic, cables, etc; ~160ns
 - Need to measure hold delay using physical signal
- Strontium beta source; high rate so can scan hold timing

Strontium source results

- FLC_PHY chip CR-RC shaper gives xe^{-x} shape, $x=t/\tau$
 - Peaking time τ~210ns
- Scan over sample-and-hold time relative to trigger to find peak
 - Close to maximum allowable latency; will try to shorten trigger logic path!

Cosmic tests

- Aim to provide absolute calibration using MIP peak
 - Check of full system dynamic range
- Ecole Polytechnique teststand has XY hodoscope scintillator array above and below VFE-PCB
 - No significant thickness of material between; cosmics of all energies
 - Covers 20×20 cm² area, angles up to 10° from vertical
 - Provides rudimentary tracking; interpolation accurate to ~1cm in X,Y
 - Thanks to Jean-Charles Vanel for setting this up!
- Prototype VFE-PCB has only one silicon wafer mounted
 - 6×6 pad array, each 1×1 cm² area
 - 36 channels, read by two FLC_PHY chips
 - Another two FLC_PHY chips mounted provide control comparison
- Active area is only $\sim 10\%$ of total teststand
 - Each silicon pad only hit once every ~360 triggers

• Use hodoscope tracking to select events with cosmic close to wafer LCWS04 - 20 Apr 2004 Paul Dauncey - CALICE Readout

Cosmic test results

- Hodoscope track interpolation over whole 20×20 cm² area
 - Interpolation reasonably smooth over this area
- Select events with at least one silicon pad >40 ADC counts above pedestal
 - More than 4 sigma cut
- Clear outline of 6×6 cm² silicon wafer observed
 - Allows survey of position of wafer
 - Pad-by-pad readout order check also possible

Cosmic test results (cont)

- Select pads consistent with hodoscope track interpolation
 - Improves pad occupancy per event from $\sim 1/360$ to $\sim 1/6$
- Clear cosmic MIP peak seen, ~45 ADC counts above pedestal
 - MIP = 200 keV; calibrates ADC so 1 count = 4.4 keV
 - 32k full range ~ 700 MIPs; requirement > 600 MIPs J
- Noise per channel ~ 9 ADC counts = 40 keV
 - MIP:noise ~ 5:1; requirement > 4:1 J

Known CERC problems

- FPGAs do not always load correctly on CERC power-up
 - Thought to be due to power-up boot timing sequence
- Mismatch of DAC output op-amp differential range and ADC input op-amp differential range
 - DAC differential output only single polarity
 - Can only cover top half of ADC range
 - Incorrect resistor values used to set range; only half of the above range
- Common mode noise when coupled with VFE-PCB
 - Approximately half observed noise contribution
- Not yet clear if these can be fixed or require redesign
 - Risk in changing layout for production
- BUT...
- Prototype board has already demonstrated it meets requirements for dynamic range, linearity and digital resolution

Use for CALICE HCAL readout

- CALICE also includes analogue and digital HCAL prototypes
 - AHCAL based on tile scintillator
 - Less stringent requirements (dynamic range, noise) than ECAL
- Potential to use CERC as readout board
 - AHCAL may also use ECAL FLC_PHY chip
 - Very similar readout so CERC directly usable in this case
- Large jumper array between input and FE FPGA
 - Firmware change allows large variety of I/O signals
 - Can mix analogue and digital as needed
 - Could even read out all-digital DHCAL
- Possibilities still under study
 - AHCAL would need ~6 more CERCs; still only one VME crate
 - DHCAL less clear, but could need ~20 CERCs; need two crates

Future plans

- VFE-PCB tests in Paris continuing in May
 - Essential test of final VFE-PCB before moving to full production
- Possible AHCAL test at DESY in May/June
 - Prototype of AHCAL front end electronics fabricated by this time
- Finalise CERC redesign by end June
 - Decide if modifying prototype or not
- Relayout and fabricated nine production CERCs in July/August
 - Simple bricolage fix for known problems may be possible
 - If so, may not relayout; save a month
- ECAL system tests from September onwards
 - Initially at least 10 layers in cosmic teststand at Ecole Polytechnique
 - DESY ECAL electron beam test in Oct/Nov
- Beam tests with HCALs in hadron beams during 2005