Front-end electronic for Si-W calorimeter

Sylvie Bondil Julien Fleury Christophe de La Taille Gisèle Martin Ludovic Raux

Plan

Electronic for a physics prototype

Electronic for a technologic prototype

Front-end Electronic for Physic Prototype

Presentation of the front-end electronic

6 active wafers

Made of 36 silicon PIN diodes 216 channels per board Each diode is a 1cm² square

2 calibration switches chips

6 calibration channels per chip 18 diodes per calibration channel

12 FLC PHY3 front-end chip

18 channels per chip 13 bit dynamic range Line buffers

To DAQ part

Differential

14 layers 2.1 mm thick

Made in korea

FLC_PHY3 overview

Multi-gain charge preamp

- •4 bits for gain selection
- •Gain from 0.3 to 5 V/pC
- •Gain selected offline

Dual shaper & track and hold

- •Gain 1 and gain 10
- •Work in parallel to select gain a posteriori

FLC_PHY3 meas. Results - Linearity

Measured input charge swing

Within ‰ linearity:

 $Q_{IN MAX} = 6.04 pC (900 MIP) @Cf = 3pF$

 $Q_{IN MAX} = 3.27 \text{ pC} (500 \text{ MIP}) @Cf = 1.6 \text{pF}$

 $Q_{IN MAX} = 0.41 pC (60 MIP) @Cf = 0.2pF$

Measured Linearity

A few ‰ on every gain

Linearity curves (sweeping Cf / G1)

Residuals (Cf=1.6pF / G1)

FLC_PHY3 meas. Results - Transient

Peaking time uniformity

189ns ± 1% RMS @G1

174ns ± 1% RMS @G10

Transient Output vs Gain (G1)

Gain uniformity @ Cf=1.6pF

696 mV± 2.5% RMS @G1

6.29 V ± 2.9% RMS@G10

Gain vs feedback capacitance setting

FLC_PHY3 meas. Results - Noise

Noise

- Series : $e_n = 1.6 \text{ nV}/\sqrt{\text{Hz}}$
- Detector + line capacitance on physic proto : 70 pF
- \rightarrow ENC: 4000 e⁻ (1/10 MIP)
- → Ouput noise : 500 µV RMS

Crosstalk

- Below 1 ‰ with gain 1 shaping
- Below 2 ‰ with gain 10 shaping

ENC measurement and fit (Cf=1.6pF)

Physic prototype front-end status

Status of front-end chip FLC_PHY

PRODUCTION DONE

- -1840 chips are being packaged
- -Automated Test Equipement for testing is ready
- -Production will be ready for application in May
- -Many spares lying around for other applications

Status of front-end PCB

READY FOR PRODUCTION

- -Prototype has been debugged
- -Functionalities has been checked:
 - -With Cosmic bench DAQ (for cross-calibration)
 - -With test beam DAQ
- -Pre-production has been sent in beginning April
- -65 boards will be produced by the end of June

Front-end electronic for Technologic prototype

Technology choice

Our expectations

-Perennity:

No way the technology we choose dies before the production ... in 20xx...

-Good digital performance:

It sounds clear that electronic for FLC will be mixed

-Good analog performance:

It still sounds clear that electronic for FLC will be mixed

-And of course, as cheap as possible

Our choice: AMS 0.35um CMOS (C35b4) and AMS 0.35 SiGe BiCMOS (S35b4)

-Perennity:

used by car industry and RF industry who need « normal » voltage supply (3.3V)

-Good digital performance:

Transistors are small enough to go as fast as we need

-Good analog performance:

Transitors are big enough to allow a 3.3V supply and let room for analog voltage swing

-And of course, as cheap as possible

Big volume → cheap due to huge industrial customer

Electronic for a technologic prototype

What is in the TDR:

- Charge preamp, tri-gain shaper
- Auto-trigger + Analog memory
- Output: Channel ID, BCID, Energy
- Chips at calorimeter end, 128 channels/chip, 1 W

Alternative solution for electronic

TESLA TDR solution

- -Industry cannot build 1m PCB and tendance is going smaller
- -High line capacitance → very noisy
- -Big number of lines →crosstalk issue and many PCB layers

Alternative solution

- -Chip embedded in detector
- -1 chip per wafer (36-channel chip)
- -low power issue
- -Cooling issues
- -temperature distribution in module?
- -Fake signal due to e.m. showers in chip?

Charge preamp. for a techno prototype

Expectations:

-Low noise : $\sim 1 \text{nV/sqrt(Hz)}$

-Low power : below 1mW

-Settling time : around 2us

Technology AMS 0.35 CMOS

Submission April, 19th 2004

Shapers for a techno prototype

Op. amp. shaper

-Conservative version

-Peaking time: 200ns

-Low power: below 400uW

-Gain 1 & 10

Capacom shaper

-Peaking time: variable from 100ns to 1us

-Low power : below 400uW -Variable gain : from 1 to 15

-Auto-hold capability

Current feedback Op. amp. shaper

-Peaking time: 200ns

-Low power: below 400uW

-Gain 1 & 10

-High Gain-Bandwidth Product (>2GHz)

Technology AMS 0.35 CMOS

Submission April, 19th 2004

ADC for a techno prototype

FLC_TECH: a first iteration

FLC_TECH description

- -3 channels
- -Multi-gain charge preamplifier
- -2 shaping: gain 1 and gain 10
- -5-depht SCA
- -Multiplexed output, auto-trigger and Idle mode

Technology AMS 0.35 CMOS

Submission April, 19th 2004

LPC contribution to techno prototype

10 bits low power high speed pipeline ADC

LPC Clermond-Ferrand, Fr

- -Gerard Bohner
- -Pascal Gay
- -Jacques Lecoq
- -Samuel Manen

Performance

- -10 bit
- -up to 5MS/s (Clk @ 50 MHz)
- -Consumption around 10mW

Status

- -First iteration (AMS 0.8 CMOS) is working well
- -New iteration (AMS 0.35 CMOS) submitted in April, 19th

Stage N of pipeline ADC block schema

10 bit ADC →10 stages

Conclusion

Physic prototype

- -Beginning of production
- -On time, so far
- -Ready for test beam in dec. 2004
- -Good start point for techno proto

Technologic prototype

- -Working on *embedded chip* solution
- -Many blocks in design
- -Focus on low power issue
 - -Pulsed supply
 - -Low power design
- -Big work to do on ADC

