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• Overview (brief)
• Current R&D

detectors
electronics
timing

• Hybrid Status from K.U.
• Summary
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Concept
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Wafer and readout chip
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SiD Si/W Features

• “Channel count” reduced by factor of 103

• Compact – thin gap ~ 1mm
Moliere radius 9mm → 14 mm

• Cost nearly independent of transverse 
segmentation

• Power cycling – only passive cooling 
required

• Dynamic range OK
• Timing possible

Low capacitance
Good S/N
Correct for charge slewing/outliers

Current configuration:

• 5 mm pixels

• 30 layers: 

•20 x 5/7 X0 +    

•10 x 10/7 X0
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• Signals
<2000 e noise
Require MIPs with S/N > 7
Max. signal 2500 MIPs (5mm pixels)

• Capacitance
Pixels: 5.7 pF
Traces: ~0.8 pF per pixel crossing
Crosstalk: 0.8 pF/Gain x Cin < 1%

• Resistance
300 ohm max

• Power
< 40 mW/wafer ⇒ power cycling

(An important LC feature!)
• Provide fully digitized, zero suppressed 

outputs of charge and time on one ASIC 
for every wafer.

Electronics requirements
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Electronics scheme – old (~1 year ago)

• Dynamic range
0.1 to 2500 MIPs
Requires large Cf = 10 pF
on input amplifier 
Two ranges
Requires large currents in 
next stages
Requires small signals for 
~MIPs after 1st stage

• Time
Pile-up background
Exotic physics
In this version, expect 10-20 
ns
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Electronics design – Present

• Dynamically switched Cf (D. Freytag)
Much reduced power

• Large currents in 1st stage only
Signals after 1st stage larger

• ∼0.1 mV → 6.4mV for MIP
• Time

No 4000e noise floor
Can use separate (smaller!) shaping 
time (∼40 ns)
Readout zero-crossing discharge 
(time expansion)

Single-channel 
block diagram

Note: Common 
∼50 MHz clock
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• Present design gives:
Noise = 20-30 e/pF

• Cin = pixel + traces + amplifier
5.7pF + 12pF + 10pF ≈ 30 pF

⇒ Noise ≈ 1000 e  (MIP is 24000 e)

• Timing: ∼ 5 ns per MIP per hit
• D. Strom MC (next)
• Simulation by D. Freytag
• Check with V. Radeka:

“Effective shaping time is 40ns;
so  σ ≈ 40/(S/N) ≈ 5 ns or better.”

Electronics design (contd)
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Timing MC
D. Strom, Calor2004
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Timing MC (contd)
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Timing MC (contd)

50 ns time constant and 
30-sample average Concerns & Issues:

• Needs testing with real 
electronics and detectors

• verification in test beam

• synchronization of clocks 
(1 part in 20)

• physics crosstalk

• For now, assume pileup 
window is ~5 ns (3 bx) 
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Power

• Use power cycling (short LC 
live times) to keep average 
power in check 

• 40 mW and no Cu look to be 
the realistic options
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Power (contd.)

• < 40 mW per wafer (∼103 pixels)
⇒ Passive cooling by conductance in W to 

module edges 
∆T≤ 5° from center to edge

⇒ Maintains small gap & Moliere radius
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Power (contd.)

• Even though accelerator live fractions are 3×10-5 (warm) and 5×10-3 (cold), 
current electronics design parameters give small difference

Electronics Duty Factor
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Maintaining Moliere Radius

• Shouldn’t need copper heat sink if 
present heat load estimates are 
correct (or close to correct).
Angle = 11 mrad

• Compare with effective Moliere
radius of 3mm at 1.7m (CALICE?): 
Angle = 13 mrad

• Capacitors may be biggest 
challenge
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Components in hand

Tungsten
• Rolled 2.5mm

1mm still OK
• Very good quality 

< 30 µm variations
• 92.5% W alloy
• Pieces up to 1m long possible

Silicon

• Hamamatsu detectors
• Should have first lab 

measurements soon
• (Practicing on old 1cm dets.)
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Investigation & Design Optimization of 
a Compact Sampling ECAL with High 
Spatial, Timing and Energy Resolution

• Objective: Develop a cost and 
performance optimized ECAL design 
which retains the performance 
advantages of the Si-W concept, but 
finer sampling, excellent time 
resolution and cost which permits 
placement at larger R.

• Investigating and comparing sampling 
geometries ranging from Si-W to 
Scintillator-W with particular 
emphasis on hybrid Scintillator-W-Si
arrangements.

Tile-fiber considered 
main Scint. technology 
option

Contact Person : Graham Wilson, Univ. of Kansas
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Relevance to detector 
design/physics performance

• Improvement in the ECAL performance in terms of :
– i) energy resolution (15%/√E to 10%/√E) – better single 

particle measurements and jet energy resolution.
– ii) timing resolution – can resolve NLC bunch crossings 

(1.4ns separation) and reduce γγ pile-up
– iii) cost at fixed radius – allows placement at larger radius 

which improves angular resolution (and hence jet energy 
resolution) and allows gaseous tracking.

– iv) position resolution – better angular resolution and jet 
energy measurement with particle flow algorithms 
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Results
Light yield of > 
4 pe/mip/mm
requiredDependence of jet 

energy resolution on 
ECAL E-resolution

Position resolution for 1 GeV
γ of 300 µm, with 1 mm Si
strips at conversion point.

Extensive study 
of EM energy 
resolution for 
various 
longitudinal 
configurations 
which retain 
small Moliere
radius

Hybrid sampling works :(even 
improves E-resolution due to 
negative correlations)
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SiD Si/W Status and Plans

• Note that current design is optimized for warm, but could be optimized for 
cold 

Would require digital pipeline
Still good to have timing?

• This year
Qualify detectors
Fabricate initial RO chip for technical prototype studies

• Readout limited fraction of a wafer ($)
• Bump bonding; finalize thermal plans

Consider technical beam test
• Test readout, timing

Continue to evaluate configuration options
• Layering, segmentation

• Next year (2005)
Order next round of detectors and RO chips

• Might depend on ITRP decision
Design and begin fab. of  prototype module for beam test 

• Full-depth, 1-2 wafer wide ECal module
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•Standard SD: 5x5 mm2 pixels with (1) 0.4mm or (2) 2.5mm readout gaps.

•10 GeV photons; look at layer 10

Effective Moliere radius
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(contd)
2.5 mm gap0.4 mm gap

dx = 0

+ 1 pixel

+ 2 pixels

+ 3 pixels
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Alternative Sampling Configurations

50 GeV electrons

SD: 30 x 2/3 X0

SD vB: 20 x 2/3 X0 + 10 x 4/3 X0

• better containment

• poorer sampling
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Radiation

• EM radiation dominated by Bhabhas (in forward endcap)
dσ/dθ ≈ 10 pb/θ3  for t-channel
Consider 1 ab-1, 500 GeV,  shower max., and θ=60 mrad
(worst case)

• Use measured damage constant (Lauber, et al., NIM A 396)
⇒ ≈6 nA increase in leakage current per pixel

Comparable to initial leakage current 
Completely negligible except at forward edge of endcap

• Evaluation of potential neutron damage in progress

• A 300 GeV electron shower into a readout chip?
“Linear Energy Threshold” (LET) is 70 MeV/mg/cm2

1 MIP in Si: 1.7 MeV/g/cm2

⇒ Expect no problems (check)


