Sleptons: masses, couplings, mixings

A. Freitas, H.-U. Martyn, U. Nauenberg, P.M. Zerwas

- 1. Overview
- 2. Theoretical picture
- 3. Experimental methods: masses, mixings, couplings

Overview

SUSY analysis program:

- 1. Establish supersymmetry breaking pattern Determine slepton masses and mixings Extrapolate to high scales \rightarrow talk of W. Porod
- 2. Establish fundamental supersymmetry relation

Gauge coupling g = Yukawa coupling \hat{g}

- \rightarrow required to resolve hierarchy problem
- \rightarrow compare precise cross-section measurements with theoretical predictions
- **3**. Identify particle spins

Precision measurements: ideal at high-energy e^+e^- collider

Masses and decay characteristics

(No experimental studies for $\tilde{\tau}_2$ in SPS1a yet)

Slepton production

In general P-wave excitation $\propto \beta^3$

Additional t-channel neutralino exchange for selectrons:

Threshold analysis

Goal:

Measurements of slepton masses with high accuracy in threshold scans

Requirements for precise theoretical predictions:

- Non-zero widths, gauge invariance
- Sommerfeld rescattering effects
- ISR / beamstrahlung
- (Backgrounds from SM and SUSY)

Non-zero width, gauge invariance

Gauge invariance can be violated by

- Production of off-shell Smuons
 - → Additional diagrams with same final state

- Inclusion of finite widths (sub-class of higher order corrections)
 - \rightarrow Complex mass:

$$m_{\tilde{\mu}}^2 \to m_{\tilde{\mu}}^2 - i m_{\tilde{\mu}} \Gamma_{\tilde{\mu}}$$

preserves all Ward identities

Coulomb correction

Slowly moving \tilde{l} 's near threshold

 \rightarrow large corrections from γ exchange for

$$\beta = \sqrt{1 - \frac{4m^2}{s}} \to 0$$

Off-shellness of the \tilde{l} 's: Effective screening of Coulomb singularity

$$\sigma_{\text{coul}} = \sigma_{\text{born}} \frac{\alpha \pi}{2\beta} \left[1 - \frac{2}{\pi} \arctan \frac{|\beta_M|^2 - \beta^2}{2\beta \Im m \beta_M} \right] \Re e \, \mathcal{C}_l \qquad \mathcal{C}_l = \left[\frac{\beta^2 + \beta_M^2}{2\beta^2} \right]^l$$
$$\beta_M = \frac{1}{s} \sqrt{(s - M_+^2 - M_-^2)^2 - 4M_+^2 M_-^2}, \qquad M_{\pm}^2 = m_{\pm}^2 - im_{\pm} \Gamma_{\pm}$$

Slepton production in the continuum

Goal:

- Precise determination of supersymmetric couplings
- Mixing in third generation
- \rightarrow requires calculation of radiative corrections

 $\mathcal{O}(\alpha)$ corrections completed for all relevant processes:

- Sfermion decay $\tilde{f} \to f \, \tilde{\chi}_i^0$, $\tilde{f} \to f' \, \tilde{\chi}_j^\pm$ Guasch, Hollik, Solà '01
- Slepton production of first/second generation $e^+e^- \rightarrow \tilde{e}^+\tilde{e}^-, \ \tilde{\mu}^+\tilde{\mu}^-, \ \tilde{\nu}\tilde{\nu}^*$ $e^-e^- \rightarrow \tilde{e}^-\tilde{e}^-$ Freitas, v.Manteuffel, Zerwas '02,04
- Third generation slepton production $e^+e^- \rightarrow \tilde{\tau}^+ \tilde{\tau}^-$ Arhrit

Arhrib, Hollik '03 Kovařík, Weber, Eberl, Majerotto '04

Renormalization

SPA conventions:

 \rightarrow talks of W. Majerotto, T. Fritzsche

- On-shell (pole mass) renormalization for masses
- SUSY Lagrange parameters in $\overline{\rm DR}$ with $\tilde{\mu}=1~{\rm TeV}$
- Mixing angles and matrices in $\overline{\rm DR}$ with $\tilde{\mu}=1~{\rm TeV}$

\rightarrow for sleptons:

- Slepton masses fixed on-shell
- Neutralino/chargino system fixed through on-shell masses
- **Slepton mixing angle and tan** β fixed in $\overline{\text{DR}}$

Neutralino/chargino renormalization

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_{\mathsf{W}}s_{\beta} \\ \sqrt{2}M_{\mathsf{W}}c_{\beta} & \mu \end{pmatrix} \qquad Y = \begin{pmatrix} M_1 & 0 & -M_{\mathsf{Z}}s_{\mathsf{W}}c_{\beta} & M_{\mathsf{Z}}s_{\mathsf{W}}s_{\beta} \\ 0 & M_2 & M_{\mathsf{Z}}c_{\mathsf{W}}c_{\beta} & -M_{\mathsf{Z}}c_{\mathsf{W}}s_{\beta} \\ -M_{\mathsf{Z}}s_{\mathsf{W}}c_{\beta} & M_{\mathsf{Z}}c_{\mathsf{W}}c_{\beta} & 0 & -\mu \\ M_{\mathsf{Z}}s_{\mathsf{W}}s_{\beta} & -M_{\mathsf{Z}}c_{\mathsf{W}}s_{\beta} & -\mu & 0 \end{pmatrix}$$

 \rightarrow 3 parameters (M_1, M_2, μ) and 6 physical particles $(\tilde{\chi}^{\pm}_{1,2}, \tilde{\chi}^0_{1...4})$

- 1. On-shell conditions for all particles
- 2. Determine counterterms for M_1 , M_2 , μ from conditions for e.g. $\tilde{\chi}^{\pm}_{1,2}$, $\tilde{\chi}^0_1$
- 3. Calculate other mass counterterms $(\tilde{\chi}^0_{2,3,4})$ \rightarrow shift in $m_{\tilde{\chi}^0_{2,3,4}}$ predicted

Two technically different but equivalent prescriptions on market:

Eberl, Majerotto, Kincel, Yamada '01

Pierce Papadopoulos '94 Fritzsche,Hollik '02

Typical examples

Slepton production:

$$\Delta = \frac{\sigma_{\alpha} - \sigma_{\mathsf{Born}}}{\sigma_{\mathsf{Born}}}$$

Slepton decay:

Experimental methods: masses, mixings, couplings

Slepton masses

From edges in decay energy distributions

Examples:

Martyn '03

<u>Note:</u> For selectrons can also use subtraction of polarized e^+ and e^- spectra to reduce backgrounds

Nauenberg et al. '02

Threshold scans

incl. beamstrahlung, ISR, etc.

Results for SPS1a:

	m	$\Delta m \; [\text{GeV}]$			Г
	[GeV]	spectra	thr. scans	combine	[GeV]
$\tilde{\chi}_1^0$	96.1	0.10	—	$0.065^{(a)}$	_
$ ilde{e}_R$	143.0	0.08	0.05	0.05	0.21 ± 0.05
$ ilde{e}_L$	202.1	0.8	0.2	0.2	0.25 ± 0.02
$ ilde{ u}_e$	186.0	1.2	1.1	1.1	$0.16^{+0.7}_{-0.5}$
$ ilde{\mu}_R$	143.0	0.2	0.2	$0.085^{(b)}$	0.2 ± 0.2
$ ilde{\mu}_L$	202.1	—	$0.5^{(c)}$?
$\tilde{\tau}_1$	133.2	0.3	?		?
$\tilde{\tau}_2$	133.2	?	$1.1^{(d)}$?

^(a) from \tilde{e}_{R} spectrum using selectron mass determined at threshold ^(b) from $\tilde{\mu}_{R}$ spectrum using $\tilde{\chi}_{1}^{0}$ mass as input ^(c,d) estimate for threshold scan [P. Grannis]

3rd generation

Determination of $\tilde{\tau}$ masses as before $m_{\tilde{\tau}_2}$ at SPS1a not yet clear

Slepton couplings

Electroweak gauge & Yukawa couplings can be probed in

• Neutralino production

Choi, Kalinowski, Moortgat-Pick, Zerwas '01

Slepton production

Freitas, v.Manteuffel '02

Determination of Yukawa couplings

Use polarized beams to disentangle U(1) and SU(2) couplings

From sneutrino cross-section **only** SU(2) coupling \hat{g} $e^+ \stackrel{\bullet}{\longrightarrow} \nu_e \tilde{\chi}_1^0 e^{\pm} \tilde{\chi}_1^{\mp}$ $e^+ e^- \rightarrow \tilde{\nu}_e \tilde{\nu}_e^* \rightarrow \nu_e \tilde{\chi}_1^0 e^{\pm} \tilde{\chi}_1^{\mp}$ $\downarrow \tau^{\mp} \nu_{\tau} \tilde{\chi}_1^0$ $\delta \hat{g} \approx 5\%$ $e^- \stackrel{\tilde{\nu}}{\longrightarrow} \tilde{\chi}_i$

Conclusions

Hunting for SUSY.....

 Slepton sector is **best understood** sector of MSSM – theoretically and experimentally

- Experimental analyses at per-cent to per-mille level
- Theoretical calculations under control at per-cent level → more work might be needed
- Testing fundamental concepts of SUSY: relation between gauge and Yukawa couplings: $g = \hat{g}$
- Precise determination of masses and mixings:
 - \rightarrow base of reconstructing high scale theory of SUSY breaking