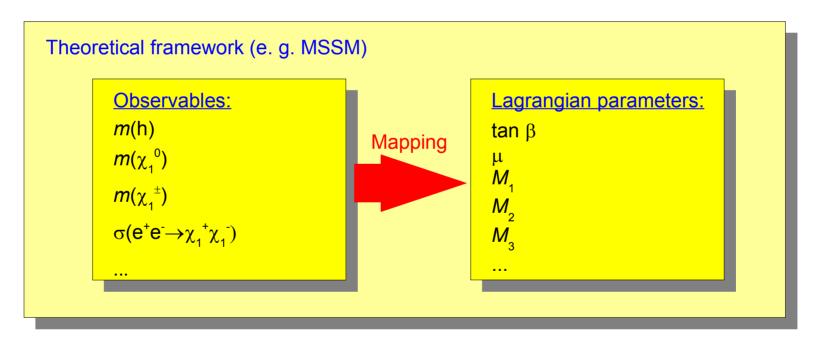
### **Experimental Tools for SPA**

Peter Wienemann DESY

On behalf of the SFITTER and Fittino authors: P. Bechtle, K. Desch, R. Lafaye, T. Plehn, P. W., D. Zerwas


> Linear Collider Workshop April 19-23, 2004 Paris, France

# The Challenge

Once SUSY has been established in experiments, Lagrangian parameters need to be extracted from measurements.

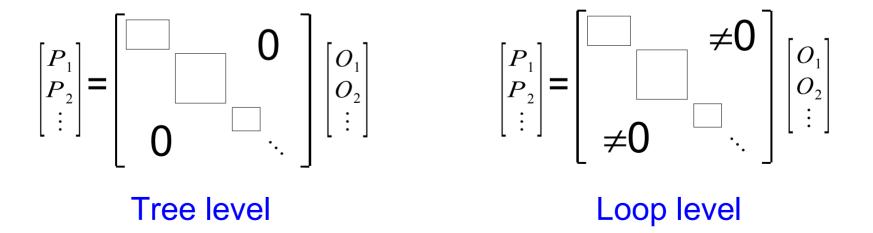
Stumbling block: Lagrangian parameters *≠* observables

Instead experiments provide:  $\sigma$ , BR, asymmetries, ...



Need a procedure to connect observables to Lagrangian parameters within a certain theoretical framework

Peter Wienemann


# The Challenge (2)

At tree level, some sectors (e.g. chargino, chargino+neutralino) can be treated separately.

At loop level, in principle every observable depends on every parameter.

Complicated mutual dependence of the various parameters.

Approximate picture (not quite correct since non-linear mapping):



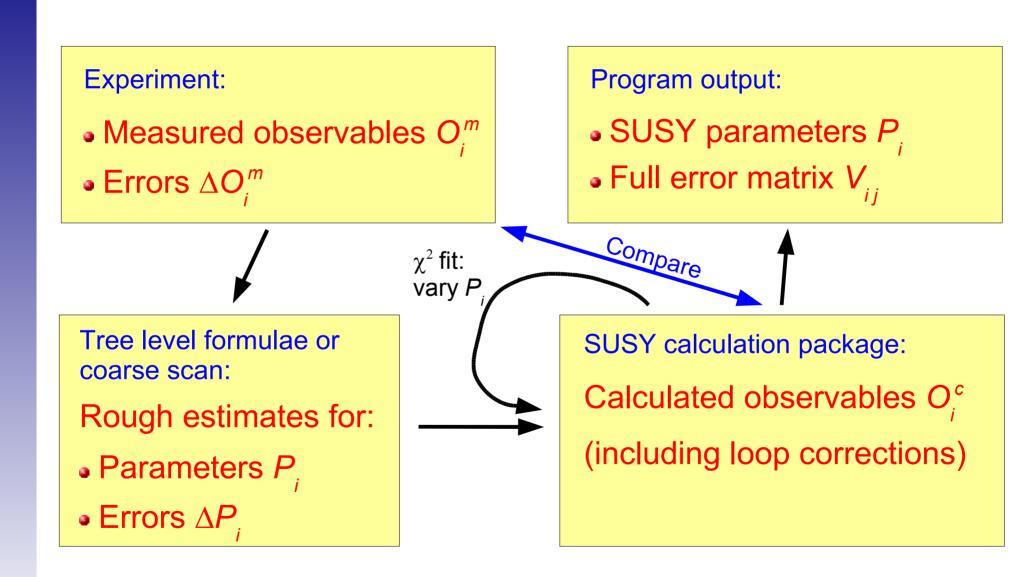
Peter Wienemann

# The SPA Project

### **SPA = Supersymmetry Parameter Analysis**

Common effort of theorists and experimentalists working on physics at the LHC and a future linear collider

#### Goals:


- Determination of the SUSY Lagrangian parameters at the electroweak scale
- Extrapolation to a high scale to reconstruct the fundamental parameters and the SUSY breaking mechanism

Information about the project:

```
http://spa.desy.de/spa
```

Peter Wienemann

# **Iterative Approach**



## The Tools

Approach implemented in two new programs presented at the EuroGDR Meeting in December 2003:

• **SFITTER** by R. Lafaye, T. Plehn and D. Zerwas

• Fittino by P. Bechtle, K. Desch and P. W.

Both determine SUSY parameters from observables in a global fit.

Peter Wienemann

# **Program Components**

### SFITTER:

- SUSPECT (masses)
- MSMIib (BR,  $\sigma_{a+a}$ )
- Prospino 2.0 (NLO  $\sigma_{nn}$ )
- MINUIT

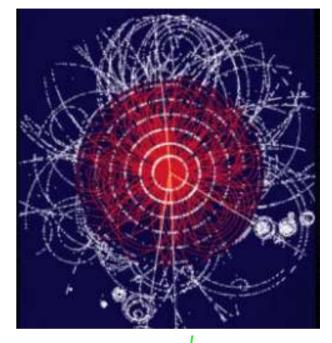
### Fittino:

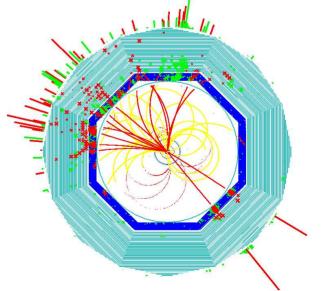
- SPheno 2.2.0 (masses, BR,  $\sigma_{ato}$ )
- MINUIT

Both programs use the Les Houches Accord: • Easy interfacing between the

- components
  - Components can be easily exchanged or added

# The Protagonists

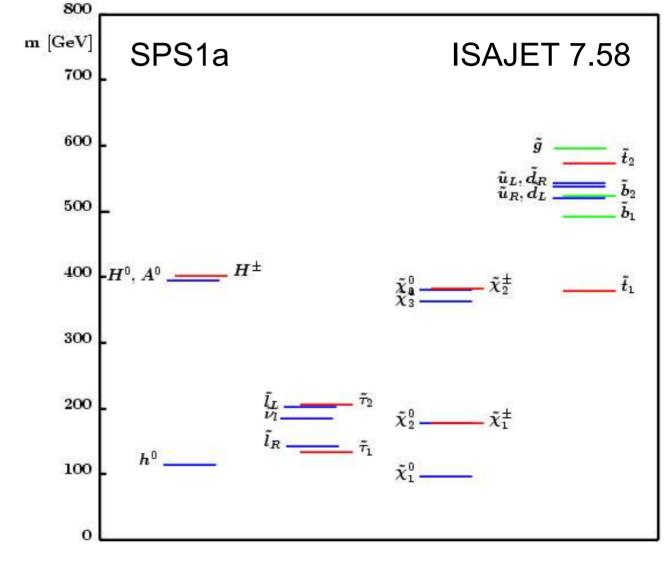

#### • LHC:


- quite comprehensive sparticle spectrum
- typical accuracy 1-10 %

#### • 0.5 – 1 TeV Linear Collider:

- only light sparticles are accessible
- typical precision 0.1-1 %

Peter Wienemann






## **The Fit Scenarios**

SPS1a example fits for three different scenarios:

- LHC only
- LC only
- LHC+LC



Peter Wienemann

# The SFITTER Inputs

#### Measurement precisions assumed for the SFITTER fits:

|                 | $m_{ m SPS1a}$ | LHC  | LC   | LHC+LC |                                                               | $m_{ m SPS1a}$ | LHC  | LC  | LHC+LC |
|-----------------|----------------|------|------|--------|---------------------------------------------------------------|----------------|------|-----|--------|
| h               | 111.6          | 0.1  | 0.05 | 0.05   | H                                                             | 399.6          |      | 1.5 | 1.5    |
| A               | 399.1          |      | 1.5  | 1.5    | H+                                                            | 407.1          |      | 1.5 | 1.5    |
| $\chi_1^0$      | 97.03          | 4.8  | 0.05 | 0.05   | $\chi_2^0$                                                    | 182.9          | 4.7  | 1.2 | 0.08   |
|                 |                |      |      |        | $\chi_4^0$                                                    | 370.3          | 5.1  |     | 2.3    |
| $\chi_1^{\pm}$  | 182.3          |      | 0.55 | 0.55   | $egin{array}{c} \chi^0_2 \ \chi^0_4 \ \chi^\pm_2 \end{array}$ | 370.6          |      | 3.0 | 3.0    |
| $\tilde{g}$     | 615.7          | 8.0  |      | 6.4    |                                                               |                |      |     |        |
| $\tilde{t}_1$   | 411.8          |      | 2.0  | 2.0    |                                                               |                |      |     |        |
| $\tilde{b}_1$   | 520.8          | 7.5  |      | 5.7    | $\tilde{b}_2$                                                 | 550.4          | 7.9  |     | 6.2    |
| $\tilde{u}_1$   | 551.0          | 23.6 |      | 23.6   | $\tilde{u}_2$                                                 | 570.8          | 17.4 |     | 9.8    |
| $\tilde{d}_1$   | 549.9          | 23.6 |      | 23.6   | $\tilde{d}_2$                                                 | 576.4          | 17.4 |     | 9.8    |
| $	ilde{s}_1$    | 549.9          | 23.6 |      | 23.6   | $\tilde{s}_2$                                                 | 576.4          | 17.4 |     | 9.8    |
| $\tilde{c}_1$   | 551.0          | 23.6 |      | 23.6   | $\tilde{c}_2$                                                 | 570.8          | 17.4 |     | 9.8    |
| $\tilde{e}_1$   | 144.9          | 4.8  | 0.05 | 0.05   | $\tilde{e}_2$                                                 | 204.2          | 5.0  | 0.2 | 0.2    |
| $	ilde{\mu}_1$  | 144.9          | 4.8  | 0.2  | 0.2    | $\tilde{\mu}_2$                                               | 204.2          | 5.0  | 0.5 | 0.5    |
| $	ilde{	au}_1$  | 135.5          | 8.6  | 0.3  | 0.3    | $\tilde{	au}_2$                                               | 207.9          |      | 1.1 | 1.1    |
| $\tilde{\nu}_e$ | 188.2          |      | 0.7  | 0.7    |                                                               |                |      |     |        |

Peter Wienemann

# The Fittino Inputs

#### For the Fittino fits, the following measurements have been used:

| Measurement                                 | Value                                    | Uncertainty                   | Measurement                                                                                                                                                                                                                                                                                                                   | Value               | Uncertainty         |
|---------------------------------------------|------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| mz                                          | 91.1187 GeV                              | 0.0021 GeV                    | $\sigma (e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                                     | 22.7 fb             | 2.0 fb              |
| $m_{W}$                                     | 80.3382 GeV                              | 0.039  GeV                    | $\sigma (e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                                     | 19.5  fb            | 2.0 fb              |
| mc                                          | 1.2  GeV                                 | 0.2  GeV                      | $\sigma (e^+e^- \rightarrow \tilde{e}_L \tilde{e}_L, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                                               | 205.0 fb            | 4.0 fb              |
| $m_{\rm b}$                                 | 4.2  GeV                                 | 0.5  GeV                      | $\sigma (e^+e^- \rightarrow \tilde{\mu}_L \tilde{\mu}_L, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                                           | 36.8 fb             | 4.0 fb              |
| $m_{\rm t}$                                 | 174.3  GeV                               | 0.3  GeV                      | $\sigma (e^+e^- \rightarrow \tilde{\tau}_1 \tilde{\tau}_1, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                                         | 39.1 fb             | 4.0 fb              |
| $m_{\tau}$                                  | 1.77699 GeV                              | 0.00029 GeV                   | $\sigma (e^+e^- \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                             | 46.7 fb             | 1.0 fb              |
| $\alpha_s$                                  | 0.1172                                   | 0.0002                        | $\sigma (e^+e^- \to Z h^0, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = 0.8, P_{e^+} = 0.6)$                                                                                                                                                                                                                                         | 11.13 fb            | 0.21 fb             |
| $G_F$                                       | $1.16639 \cdot 10^{-5} \text{ GeV}^{-2}$ | $1.10^{-11} \text{ GeV}^{-2}$ |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $1/\alpha$                                  | 127.934                                  | 0.027                         | $\sigma \left( e^+ e^- \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = -0.6 \right)$                                                                                                                                                                                     | 104.8 fb            | 3.5 fb              |
| $\sin^2 \theta_W$                           | 0.23113                                  | 0.00015                       | $ \begin{array}{l} \sigma \; (~{\rm e^+e^-} \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0, \sqrt{s} = 500 ~{\rm GeV}, ~P_{\rm e^-} = -0.8, ~P_{\rm e^+} = -0.6) \\ \sigma \; (~{\rm e^+e^-} \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0, \sqrt{s} = 500 ~{\rm GeV}, ~P_{\rm e^-} = -0.8, ~P_{\rm e^+} = -0.6) \end{array} $ | 43.9 fb             | 2.0 fb              |
| $m_{\rm h}$ o                               | 110.2  GeV                               | 0.5  GeV                      | $\sigma (e^+e^- \rightarrow \chi_2^0 \chi_2^0, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = -0.6)$                                                                                                                                                                                                                   | 43.8 fb             | 2.0 fb              |
| $m_{\mathrm{H}^{0}}$                        | 400.8 GeV                                | 1.3  GeV                      | $\sigma (e^+e^- \rightarrow \tilde{e}_L \tilde{e}_L, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = -0.6)$                                                                                                                                                                                                             | $97.4  \mathrm{fb}$ | 4.0 fb              |
| $m_{A^0}$                                   | 399.8 GeV                                | 1.3  GeV                      | $\sigma \ (e^+e^- \to \tilde{e}_L \tilde{e}_R, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = -0.6)$                                                                                                                                                                                                                   | 223.7 fb            | $4.0   \mathrm{fb}$ |
| $m_{\mathrm{H}\pm}$                         | 407.7  GeV                               | 1.1  GeV                      | $\sigma \ ( \ {\rm e^+e^-} \rightarrow {\rm \tilde{e}}_R {\rm \tilde{e}}_R, \sqrt{s} = 500 \ {\rm GeV}, \ P_{\rm e^-} = -0.8, \ P_{\rm e^+} = -0.6)$                                                                                                                                                                          | 29.0  fb            | $2.0~\mathrm{fb}$   |
| $m_{\tilde{u}_L}$                           | 583.5 GeV                                | 9.8 GeV                       | $\sigma \ ( \ {\rm e^+e^-}  ightarrow {\tilde \mu}_L {\tilde \mu}_L, \sqrt{s} = 500 \ { m GeV}, \ {P_{\rm e^-}} = -0.8, \ {P_{\rm e^+}} = -0.6)$                                                                                                                                                                              | $22.7  \mathrm{fb}$ | $2.0~{ m fb}$       |
| $m_{\vec{u}_R}$                             | 566.5 GeV                                | 23.6  GeV                     | $\sigma \ (e^+e^- \rightarrow \tilde{\tau}_1 \tilde{\tau}_1, \sqrt{s} = 500 \text{ GeV}, P_{e^-} = -0.8, P_{e^+} = -0.6)$                                                                                                                                                                                                     | 25.7  fb            | $2.0  \mathrm{fb}$  |
| $m_{\tilde{\mathrm{d}}_L}$                  | 586.7 GeV                                | 9.8  GeV                      | BR ( $h^0 \rightarrow b\bar{b}$ )                                                                                                                                                                                                                                                                                             | 0.82                | 0.01                |
| $m_{\tilde{\mathbf{d}}_R}^{L}$              | 566.3 GeV                                | 23.6  GeV                     | BR ( $h^0 \rightarrow c\bar{c}$ )                                                                                                                                                                                                                                                                                             | 0.04                | 0.01                |
| $m_{\tilde{e}_L}$                           | 583.6  GeV                               | 9.8 GeV                       | BR $(h^0 \rightarrow \tau^+ \tau^-)$                                                                                                                                                                                                                                                                                          | 0.14                | 0.01                |
| m <sub>č<sub>R</sub></sub>                  | 566.5 GeV                                | 23.6 GeV                      |                                                                                                                                                                                                                                                                                                                               | Marked Con-         | NO 709955           |
| m <sub>sL</sub>                             | 586.7  GeV                               | 9.8 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\vec{s}_R}$                             | 566.3 GeV                                | 23.6  GeV                     |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{E_R}$                                   | 417.5 GeV                                | 2.0 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| m <sub>b<sub>R</sub></sub>                  | 532.1 GeV                                | 5.7  GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| m <sub>b<sub>L</sub></sub>                  | 565.6  GeV                               | 6.2  GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
|                                             | 192.3  GeV                               | 0.7  GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{\nu}_{eL}}$                      | 208.0 GeV                                | 0.2 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{e}_L}$<br>$m_{\tilde{e}}$        | 143.91 GeV                               | 0.05 GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{e}_R}$<br>$m_{\tilde{\mu}_L}$    | 208.0 GeV                                | 0.5 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| - D. 197 (1975)                             | 143.9 GeV                                | 0.2 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{\mu}_R}$<br>$m_{\tilde{\tau}_R}$ | 134.3 GeV                                | 0.3 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\hat{\tau}_L}$                          | 211.8 GeV                                | 1.1 GeV                       |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{g}}$                             | 630.4 GeV                                | 6.4  GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
|                                             | 95.74 GeV                                | 0.05 GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{\chi}_{1}^{0}}$                  | 182.40 GeV                               | 0.08 GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{\chi}^{0}_{2}}$                  | 180.46 GeV                               | 0.55 GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{\chi}_1^{\pm}}$                  |                                          |                               |                                                                                                                                                                                                                                                                                                                               |                     |                     |
| $m_{\tilde{\chi}_2^{\pm}}$                  | 380.0 GeV                                | 3.0  GeV                      |                                                                                                                                                                                                                                                                                                                               |                     |                     |

Peter Wienemann

### mSUGRA Fit Results

#### Fit with SFITTER

- Input observables not smeared within their errors, no systematic and theory errors included
- Fit start values: mean of upper and lower bound (not necessarily close to true value)

|              | SPS1a | StartFit | LHC    | $\Delta_{ m LHC}$ | LC     | $\Delta_{ m LC}$ | LHC+LC | $\Delta_{\rm LHC+LC}$ |
|--------------|-------|----------|--------|-------------------|--------|------------------|--------|-----------------------|
| $M_0$        | 100   | 500      | 100.08 | 4.1               | 100.03 | 0.08             | 100.04 | 0.08                  |
| $M_{1/2}$    | 250   | 500      | 249.95 | 1.8               | 250.02 | 0.13             | 250.01 | 0.10                  |
| $\tan \beta$ | 10    | 50       | 9.87   | 1.0               | 9.98   | 0.15             | 9.98   | 0.14                  |
| $A_0$        | -100  | 0        | -99.00 | 30.8              | -98.24 | 4.56             | -98.21 | 4.23                  |

- True SPA1a values well reconstructed for all parameters
- Missing strongly interacting particles at a LC do not significantly worsen parameter determination due to mSUGRA unification
- Scalar and gaugino mass very precise from LC

Peter Wienemann

### **General MSSM**

Without assuming a certain SUSY breaking scenario, the MSSM contains 105 SUSY parameters (masses, phases, mixing angles)

 $\rightarrow$  too many parameters for a fit

Simplifying assumptions:

- all phases = 0
- no mixing between generations
- no mixing within first two generations
- $\rightarrow$  24 parameters remain

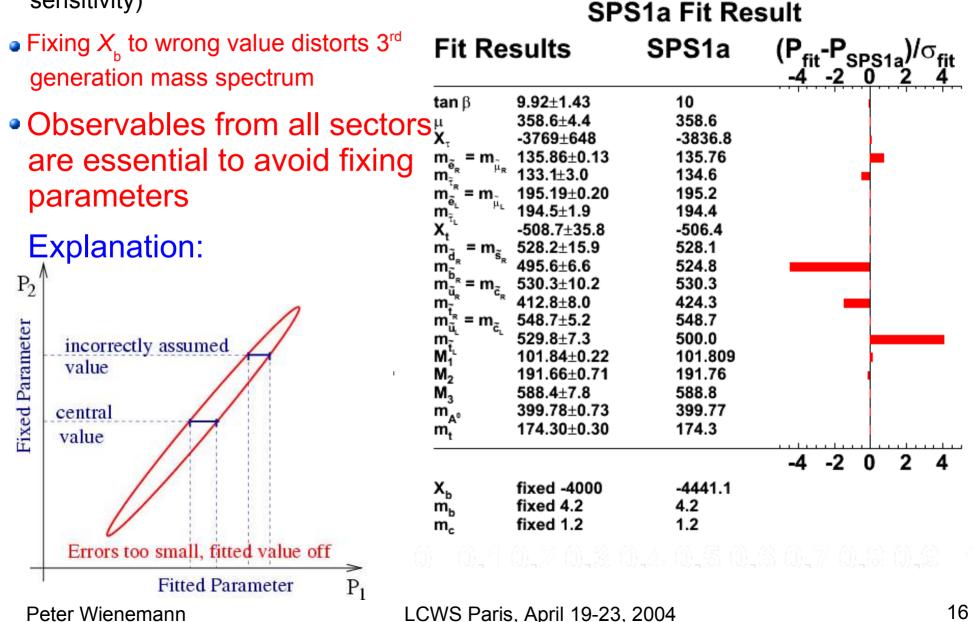
# **General MSSM Fit Results**

#### Fit with SFITTER

- Input observables not smeared within their errors, no systematic and theory errors included
- Fit start values: M<sub>1</sub>, M<sub>2</sub>, μ
   and tan β from coarse scan, other parameters fixed to true values
- Parameters well reconstructed
- Only combined LHC and LC input allows a complete fit without fixing parameters

|                           | LHC                 | LC                 | LHC+LC             | SPS1a  |
|---------------------------|---------------------|--------------------|--------------------|--------|
| $\tan\beta$               | $10.23 \pm 4.3$     | $10.26{\pm}1.6$    | $10.16 \pm 1.4$    | 10     |
| $M_1$                     | $102.45 \pm 5.1$    | $102.32 \pm 0.3$   | $102.17 {\pm} 0.2$ | 102.2  |
| $M_2$                     | $191.8 {\pm} 6.0$   | $192.52 \pm 1.2$   | $191.71 {\pm} 0.8$ | 191.8  |
| $M_3$                     | $578.68 {\pm} 15$   | fixed 500          | $589.51 \pm 15$    | 589.4  |
| $M_{\tilde{\tau}_L}$      | fixed 500           | $197.68 {\pm} 3.3$ | $198.62 \pm 2.9$   | 197.8  |
| $M_{\hat{\tau}_R}$        | $129.03 \pm 9.0$    | $135.66 {\pm} 4.4$ | $134.28 \pm 4.0$   | 135.5  |
| $M_{\tilde{\mu}_L}$       | $198.7 \pm 5.1$     | $198.7 {\pm} 0.5$  | $198.7 {\pm} 0.5$  | 198.7  |
| $M_{\tilde{\mu}_R}$       | $138.2 \pm 5.0$     | $138.2 \pm 0.2$    | $138.2 {\pm} 0.2$  | 138.2  |
| $M_{\tilde{e}_L}$         | $198.7 {\pm} 5.1$   | $198.7 {\pm} 0.2$  | $198.7 {\pm} 0.2$  | 198.7  |
| $M_{\hat{e}_R}$           | $138.2 {\pm} 5.0$   | $138.2 {\pm} 0.06$ | $138.2 {\pm} 0.06$ | 138.2  |
| $M_{\hat{q}3L}$           | $498.1 \pm 108$     | $497.6 \pm 51$     | $499.97 \pm 32$    | 501.3  |
| $M_{\tilde{t}_R}$         | fixed 500           | $420 \pm 24$       | $420.25 \pm 15$    | 420.2  |
| $M_{\tilde{b}_R}$         | $522.38 \pm 112$    | fixed 500          | $526.93 \pm 32$    | 525.6  |
| $M_{\hat{q}2L}^{\circ n}$ | $550.73 \pm 13$     | fixed 500          | $553.74 \pm 7.0$   | 553.7  |
| $M_{\tilde{c}_R}$         | $529.02 \pm 24$     | fixed 500          | $532.14 \pm 24$    | 532.1  |
| $M_{\hat{s}_R}$           | $526.21 \pm 24$     | fixed 500          | $529.34 \pm 24$    | 529.3  |
| $M_{\hat{q}1L}$           | $550.73 \pm 13$     | fixed 500          | $553.74 \pm 7.1$   | 553.7  |
| $M_{\tilde{u}_R}$         | $529.02 \pm 24$     | fixed 500          | $532.14 \pm 24$    | 532.1  |
| $M_{\widetilde{d}_R}$     | $526.2 \pm 24$      | fixed 500          | $529.34 \pm 24$    | 529.3  |
| $A_{\tau}^{a_{R}}$        | fixed 0             | $-202.7 \pm 1007$  | $118.32 \pm 1100$  | -253.5 |
| $A_t$                     | $-507.7 \pm 54$     | $-501.95 \pm 15$   | $-503.11 \pm 13$   | -504.9 |
| $A_b$                     | $-741.55 \pm 35228$ | fixed 0            | $-250.7 \pm 13513$ | -799.4 |
| $m_A$                     | fixed 500           | $399.1 {\pm} 0.9$  | $399.1 {\pm} 0.9$  | 399.1  |
| $\mu$                     | $345.21 {\pm} 6.4$  | $344.34{\pm}3.5$   | $344.36 {\pm} 2.1$ | 344.3  |

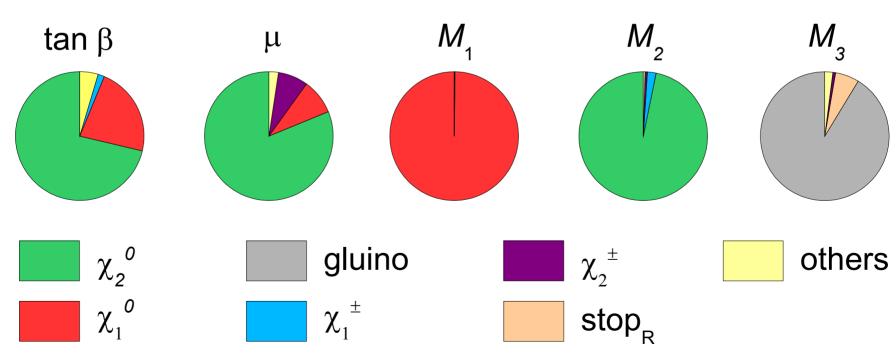
### **General MSSM Fit Results**


#### Fit with Fittino

- Input observables not smeared within their errors, no syst.+theory errors (except for m<sub>h</sub>)
- Start values: From tree level formulae
- Assumed universality in 1<sup>st</sup> and 2<sup>nd</sup> generation
- All parameters well reconstructed

| Fit Re                                          | sults       | SPS1a   | (P <sub>fit</sub> -P <sub>SPS1a</sub> )/♂ <sub>fi</sub><br>-4 -2 0 2 4 |  |  |
|-------------------------------------------------|-------------|---------|------------------------------------------------------------------------|--|--|
| tan β                                           | 10.0±1.2    | 10      |                                                                        |  |  |
| μ                                               | 358.6±3.7   | 358.6   |                                                                        |  |  |
| X <sub>τ</sub>                                  | -3884±4096  | -3836.8 |                                                                        |  |  |
| $m_{\tilde{a}} = m_{\tilde{a}}$                 | 135.76±0.72 | 135.76  |                                                                        |  |  |
| m <sub>ĩ,</sub> <sup>µ</sup> r                  | 133.6±23.7  | 134.6   |                                                                        |  |  |
| $m_{\tilde{e}_{L}}^{r} = m_{\tilde{\mu}_{L}}$   | 195.21±0.29 | 195.2   |                                                                        |  |  |
| m <sup>v</sup> <sub>t</sub> <sup>µ</sup>        | 194.3±12.1  | 194.4   |                                                                        |  |  |
| X.                                              | -506.9±35.4 | -506.4  |                                                                        |  |  |
| $m_{\tilde{d}_R} = m_{\tilde{s}_R}$             | 528.1±19.7  | 528.1   |                                                                        |  |  |
| m <sub>õ</sub> <sup>°</sup> <sup>°</sup>        | 524.7±7.7   | 524.8   |                                                                        |  |  |
| $m_{\tilde{u}_{R}}^{D_{R}} = m_{\tilde{c}_{R}}$ | 530.2±25.7  | 530.3   |                                                                        |  |  |
| m~                                              | 424.5±9.9   | 424.3   |                                                                        |  |  |
| $m_{\tilde{u}_{L}}^{t_{R}} = m_{\tilde{c}_{L}}$ | 548.7±5.3   | 548.7   |                                                                        |  |  |
| m~                                              | 500.0±9.2   | 500.0   |                                                                        |  |  |
| M₁ <sup>t</sup>                                 | 101.81±0.16 | 101.81  |                                                                        |  |  |
| M <sub>2</sub>                                  | 191.77±0.34 | 191.76  |                                                                        |  |  |
| M_3                                             | 588.8±7.9   | 588.8   |                                                                        |  |  |
| m <sub>a</sub> ,                                | 399.76±0.73 | 399.77  |                                                                        |  |  |
| m                                               | 174.30±0.30 | 174.3   |                                                                        |  |  |
| X                                               | -4445±2025  | -4441.1 |                                                                        |  |  |
|                                                 |             |         | -4 -2 0 2 4                                                            |  |  |
| m <sub>b</sub>                                  | fixed 4.2   | 4.2     |                                                                        |  |  |
| mç                                              | fixed 1.2   | 1.2     |                                                                        |  |  |

# **General MSSM Fit Results**

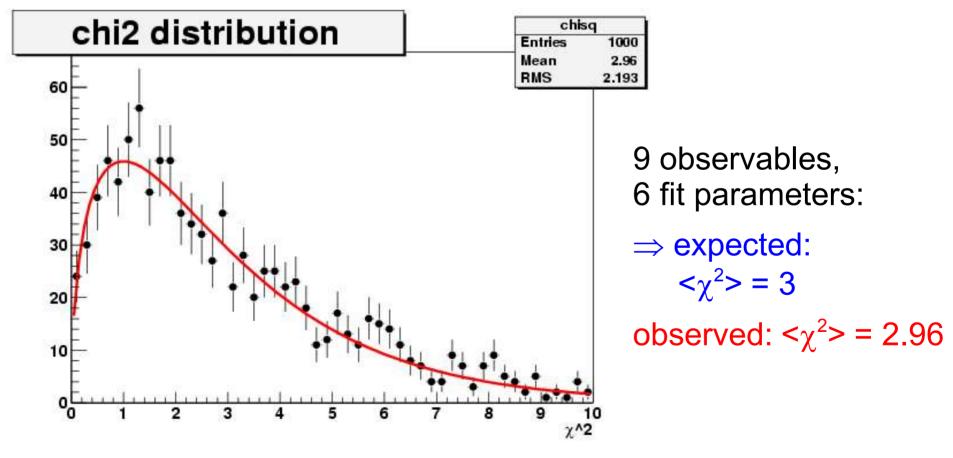

Same fit but fixed X<sub>b</sub> (weak sensitivity)





Sensitivity of MSSM parameters on the various observables:

Individual  $\Delta \chi^2$  contributions: Vary parameter by  $\pm 1\sigma$  and determine  $\Delta \chi^2$  of the various observables




Example: General MSSM Fit

Peter Wienemann

# Fit with Smeared Measurements

- Reduced observable and parameter set
   9 observables, 6 fit parameters
- Simulate 1000 different measurements of the observables
- Smear observables within their errors and carry out fit



Peter Wienemann

# Summary

- Two powerful tools, SFITTER and Fittino, are available for SUSY parameter analysis.
- Both have been successfully tested in example fits for the SPS1a scenario.
- Precision of mSUGRA parameters driven by LC measurements.
- Observables from all sectors are essential in general MSSM fits. Here, LHC and LC perfectly complement each other.

Peter Wienemann

## Outlook

- Find observables to get a better handle on  $A_{\tau}$  and  $A_{b}$ .
- Check fitting procedure for other Snowmass points.
- Take correlations between input observables into account.
- Other SUSY packages welcome to crosscheck and extend the fit results.