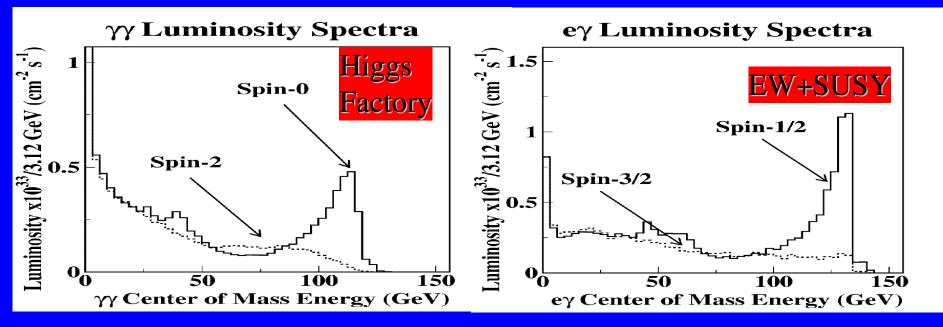

Gamma Gamma (gC) & e- Gamma Colliders

Mayda M. Velasco

Northwestern Univ. April 23, 2004

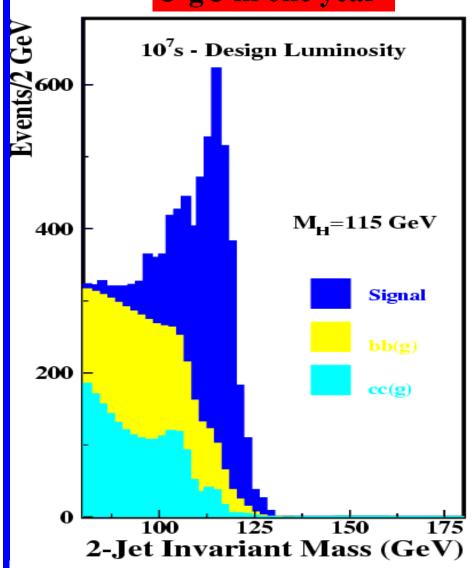

Pleanary LCWS-2004 Paris

2002: @ Jeju it was discussed....

- To make LC as versatile as possible: a 2^{nd} IR capable of working as $\gamma\gamma$ & e γ machine was desireable.
- Concluded γγ:
 - Complemented in important ways the LC & the LHC program: *i.e.* precisions measurements of the light Higgs.
 - Provided unique opportunities: *i.e.* measurements of CP admixture (from polarization asymmetries).
 - Extended discovery reach: i.e. Heavy Higgs.

High event rate expected at a low energy gC: Light SM Higgs

Machine	$E_{e^+e^-}(\text{GeV})$	$M_{h_{SM}}({ m GeV})$	Yield/year	Ref.
*CLICHE	150	115	22.5k	hep-ex/0110056
CLICHE	160	120	23.6k	Correct for $\Gamma_{\gamma\gamma}$
#TESLA	160	120	21.0k	hep-ex/0101056
# NLC	160	120	11.0k	hep-ex/0110055



* Is a 10% CLIC TEST MACHINE # DESIGNS @ SNOWMASS

Example: gC for 115-120 GeV SM Higgs

Asner, Schmitt, Velasco

Measurement	Precision
$\Gamma_{\gamma\gamma} \times Br(h \to bb)$	2%
$\Gamma_{\gamma\gamma} \times Br(h \to WW)$	5% *
$\Gamma_{\gamma\gamma} imes Br(h o \gamma\gamma)$	22%*

- * Only hep-ex/0110056 available
- LC + gC gives a precise value for

$$\Gamma_{\gamma\gamma}$$
 & $\Gamma_{ ext{TOTAL}}$

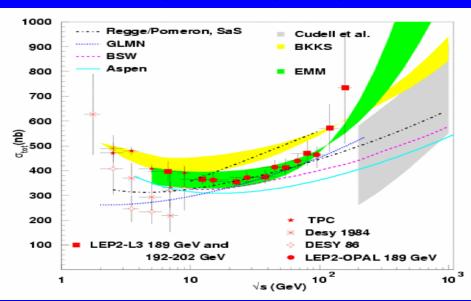
• LHC + gC test anomalous couplings

$$\Gamma_{\rm .gg}$$
 / $\Gamma_{\gamma\gamma}$

bb study in great detail by several groups, all results are in agreement

----> ASIA, EUROPE & USA

Resolved background photons is not a big effect in h to bb!


Good progress since Jeju....

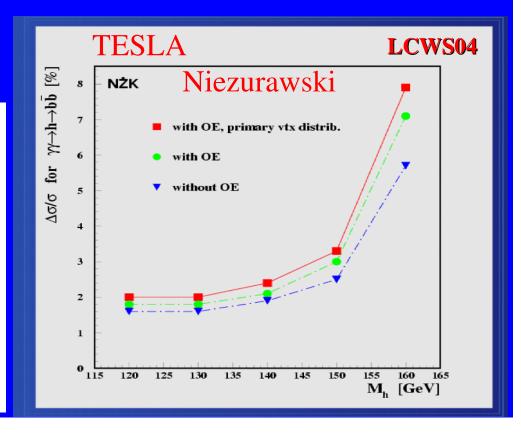
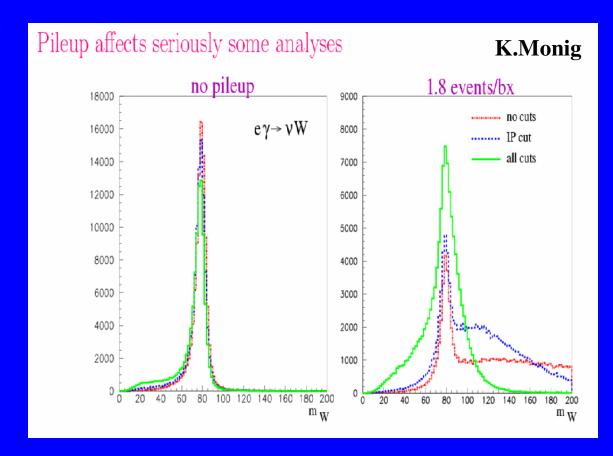
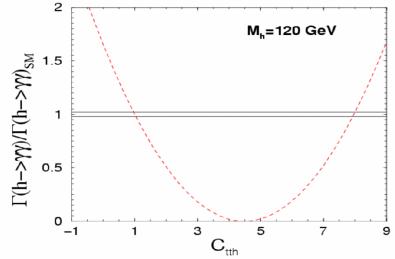

@ Praga all group converged on PYTHIA parameter for X-section

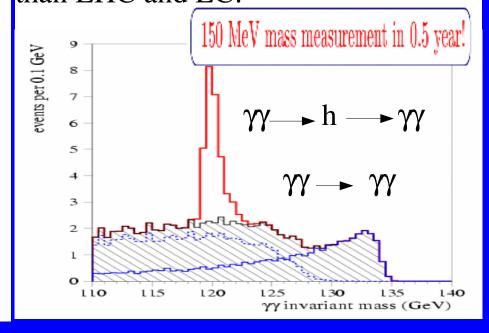
TABLE III: Event Multiplicity Due to Resolved Photon Backgrounds.

NLC: hep-0308103	160 GeV	500 GeV
Events/Crossing	0.6	1.8
Tracks/Crossing $(p > 0.2 \text{ GeV}, \cos \theta < 0.9)$	3.7	14.6
Energy/Track $(p > 0.2 \text{ GeV}, \cos \theta < 0.9)$	$0.70 \mathrm{GeV}$	$0.74~{ m GeV}$
Clusters/Crossing $(E > 0.1 \text{ GeV}, \cos \theta < 0.9)$	5.5	21.8
Energy/Cluster $(E > 0.2 \text{ GeV}, \cos \theta < 0.9)$	$0.45~{ m GeV}$	0.49 GeV


Godbole, De Roeck, Grau, Pancheri


Other analysis can be more sensitive... needs to be study before making detector recommendations,... if any

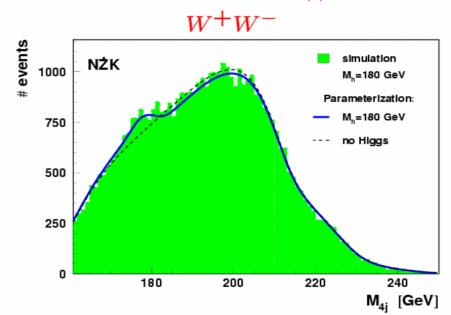
LCWS04

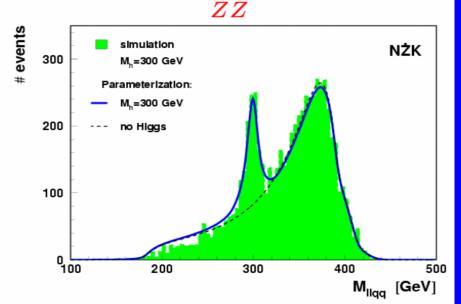

In the absence of a technology choice we need to do the studies on WARM and COLD in a consistent manner

Measurement of $\Gamma_{\gamma\gamma}$ is best at gC & give us tt-Yukawa couplings & access to new physics $\Gamma_{\gamma\gamma}=2\%$ in 1 year

 $\gamma\gamma \to h$ depends on the tth coupling, and a 2% measurement of this cross section results in a 4% constraint on Y_t .

Besides that ratio of Br for bb, WW & γγ. Low energy gG Higgs factory will provide important test of SM given with good or better precision than LHC and LC:




SM heavy Higgs (200-350 GeV) @ gC can measure partial width and phase

$$\gamma\gamma \to \mathcal{H} \to WW, ZZ$$

Niezurawski Zarnecki Krawczyk

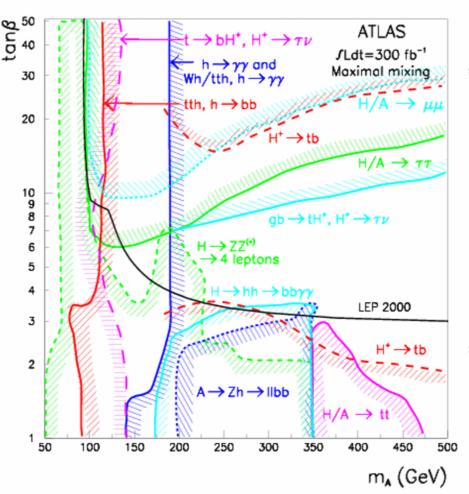
From the simultaneous fit to the observed W^+W^- and ZZ mass spectra both the two-photon width $\Gamma_{\gamma\gamma}$ and phase $\phi_{\gamma\gamma}$ can be determined.

For SM: $\Gamma_{\gamma\gamma}$ with precision $\sim 4-9\%$,

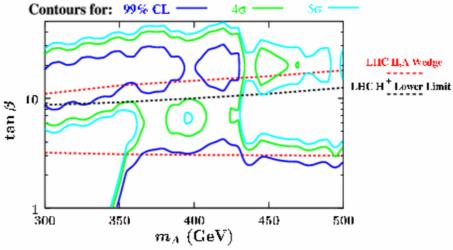
 $\phi_{\gamma\gamma}$ with precision 40 – 120 mrad

JHEP 0211 (2002) 034 [hep-ph/0207294]

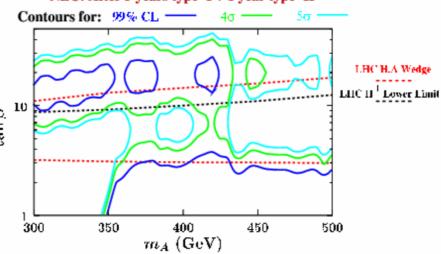
A.F.Żarnecki, ECFA/DESY workshop, November 2002, Praha (including systematic uncertainties)


gC'also important for Higgs Physics Beyond the SM

- SUSY (Now, h, H, A, H+, H-)
 - Real MSSM (Heinemeyer, Weiglein, et al, Logan, et al, etc)
 - Real NMSSM (Gunion, Szleper, h -> aa -> bbbb, bbττ,ττττ)
 - Etc...
- 2HDM (Ginzburg, Osland, Krawczyk, etc.)
- Littlest Higgs (Logan, etc.)
- Exotic Higgs-Radion mixing (Cheung, Gunion, Hewett, etc.)


Most of the work is on: How gC complement the other Machines in the case of all the above? Exception --> Heavy Higgs, also seen as discovery machine.

@ Jeju: Neutral Heavy Higgs analysis in gC fills LHC wedge!


Asner, Gromberg, Gunion

NLC: After 3 years type-I + 1 year type-II

Jeju: H+@gC' Higher X-Sections & Model Independent!

V. Martin

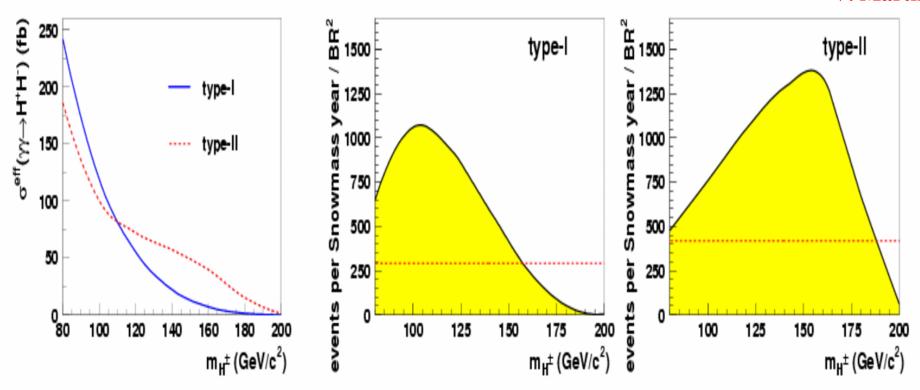
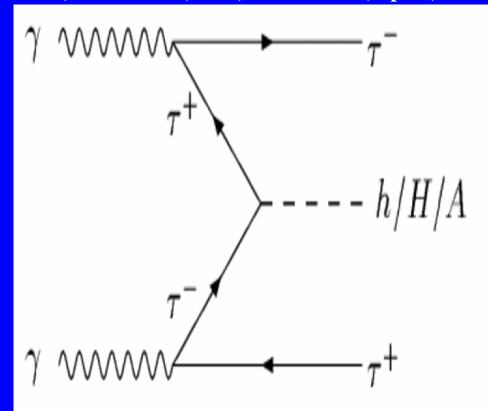



FIG. 12: On the left: The effective cross section for $\gamma\gamma \to H^+H^-$ for the two beam configurations. The center and right plots show the number of accepted events per BR $(H^+ \to \tau^+\nu_{\tau})^2$ per Snowmass year, as a function of m_{H^\pm} . The dashed horizontal line shows the number of accepted background $\gamma\gamma \to W^+W^-$ events.

gC besides, $\Gamma_{\gamma\gamma}$ that could help to distinguish among SUSY model, complements LHC/LC measurements of Tan Beta

Choi, Kalinowski, Lee, Muhlleitner, Spira, Zerwas

$$g_{\Phi \tau \tau} = \tan \beta$$
 for $\Phi = A$
 $g_{\Phi \tau \tau} \simeq \tan \beta$ for $\Phi = h, H$

- Error on $\Delta(\tan \beta) \sim 1$ for tan $\beta > 10$
- All tools available to make the experimental study (Szleper, h→h h)

CP violation... Special role for gC

- → Model independent at gC vs Model dependent at LC
- Significant Progress in CP violation detection:
 - Light & Heavy
- With Linear and Circularly polarized beam
 - Linearly polarized beam designed made two times better with repect to what was shown at SNOWMASS by using $10~\mu m$ laser increasing beam energy by a factor of two (Higher degree of linear polarization and luminosity).

Complex MSSM: we have MASS and CP Eigenstates

CP Eigenstates

✓ h, H (CP-EVEN)

$$VV\phi: c_V \frac{g m_V^2}{m_W} g_{\mu\nu}$$

 \sim A (CP-ODD)

$$=0$$

Mass Eigenstates

$$M_{h_1} < M_{h_2} < M_{h_3}$$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \begin{pmatrix} h \\ H \\ A \end{pmatrix} \equiv U \begin{pmatrix} h \\ H \\ A \end{pmatrix}$$

LC'& LHC' can study the C'P quantum #'s from angular correlations...But only gC' could see C'P admixture in a model independent way

- Linear polarization $\alpha \zeta_1, \zeta_3$
- Circular polarization $\alpha \zeta_2$

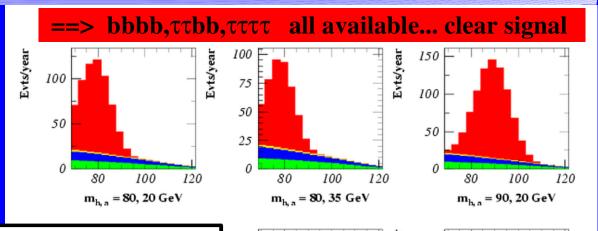
 A_3 > (<) 0 for CP EVEN(ODD)

$$dN = dL_{\gamma\gamma}d\Gamma_{4}^{1}(|M_{++}|^{2} + |M_{--}|^{2})\bigg\{(1 + \langle \zeta_{2}\widetilde{\zeta}_{2}\rangle)\bigg\}$$

$$+(\langle\zeta_2\rangle+\langle\widetilde{\zeta}_2\rangle)\mathcal{A}_1+(\langle\zeta_3\widetilde{\zeta}_1\rangle+\langle\zeta_1\widetilde{\zeta}_3\rangle)\mathcal{A}_2+(\langle\zeta_3\widetilde{\zeta}_3\rangle-\langle\zeta_1\widetilde{\zeta}_1\rangle)\mathcal{A}_3\bigg\}\,,$$

Grzadkowski & Gunion (1992)

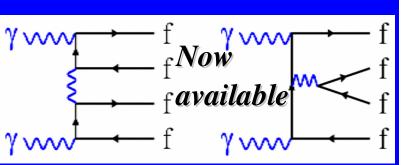
 $A_1 = A_2 = 0$ if there is no CP admixture

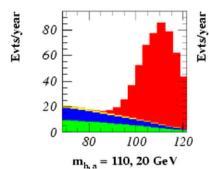

In Models where LC cannot see h -->h h'

LCWS04

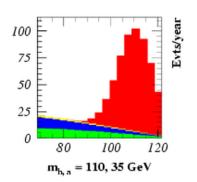
gC' will do the job...

Gunion, Szleper

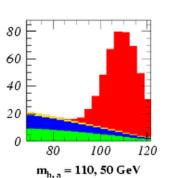

LHC: Could see some of them, but will not be able to measure their masses



100


50

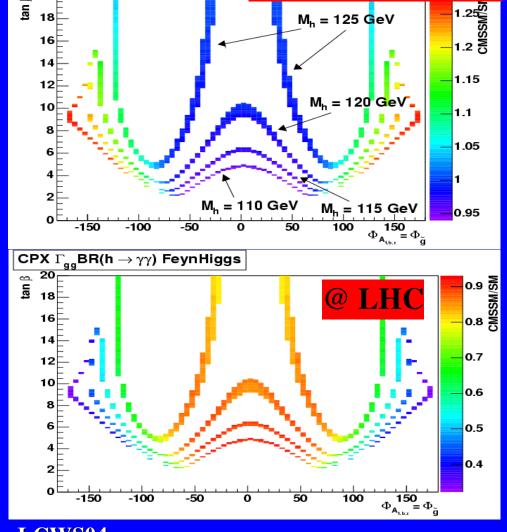
==> WORRIES FOR WHEN COUPLING TO THE Z GETS LOST BY <u>h & H</u> & <u>h1,h2,h3</u> CLOSE IN MASS (Small M_{L.}).



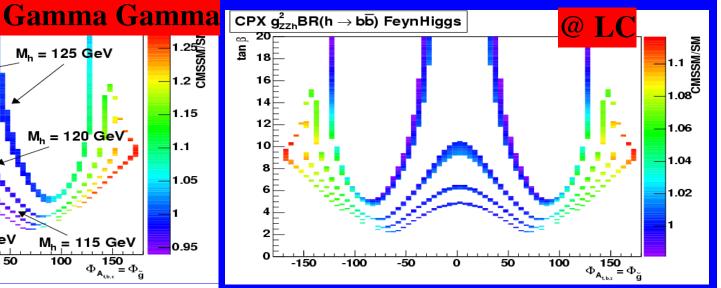
 $m_{h,a} = 90, 35 \text{ GeV}$

100

 $m_{b,a} = 100, 20 \text{ GeV}$

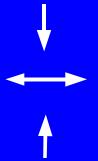


100


 $m_{h,a} = 100, 35 \text{ GeV}$

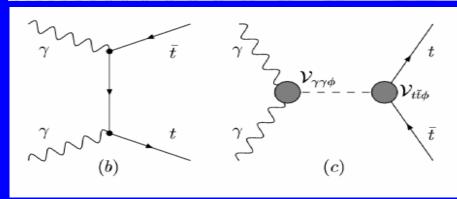
50

CP violation bigger @ gC than @ LC in bb decay & filling regions difficult @ LHC

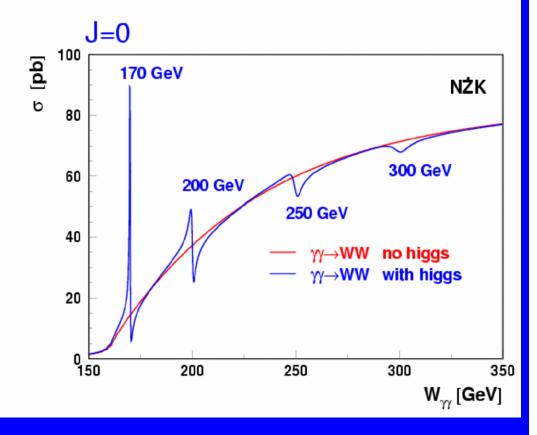


CPX Γ_{\sim} BR(h ightarrow bb) FeynHiggs

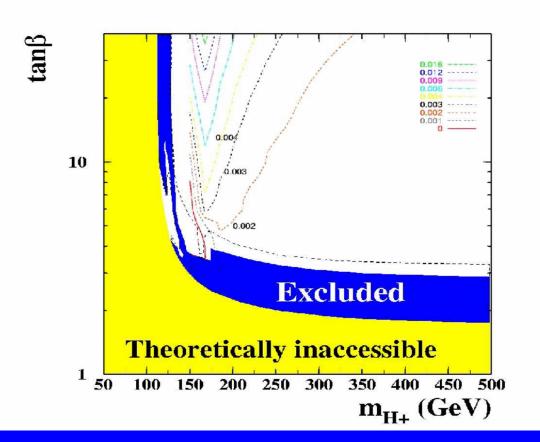
MSSM


- •LHC Suppresion
- •LC Small Effect
- •gC Enhacement

Heinemeyer Velasco


Wood

Only in gC can we exploit interference effects to extract phases needed to study CP violations in an effective way


- Exploit interference:
 - W+W-, Warsaw & Krawczyk
 - Top pairs, Asakawa et al, Godbole et al, Lee et al

Large interference effects are expected in the considered mass range

New idea: CP violation for <u>Light Higgs</u> in the MSSM using interference & tau polarization (no need for mass peak)

Scan over MSSM parameters

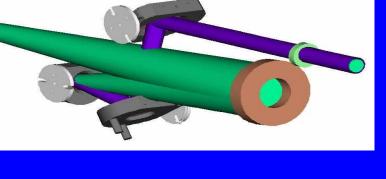
Predicted change in the tau polarization measureable in regions of parameter space not excluded by LEP

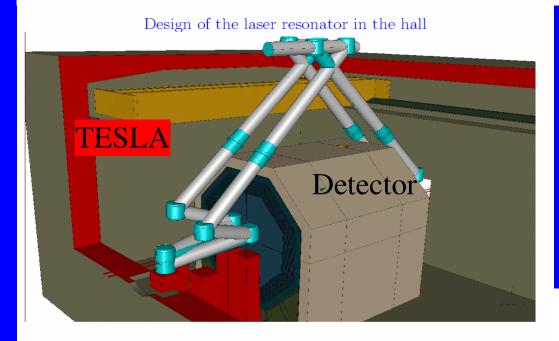
Godbole & Krans

Experimental error 1 oder of magnitude smaller than the expected effect

Exotic... Tecni-pion best at gC

Cheung, Hioki, Hewett, Rizzo, Gunion, Pietrello, etc...


- Light-by-light scattering and $\gamma\gamma \to ZZ$ proceed via box diagrams in the SM.
- Large extra dimenions: continuous spectrum of graviton exchanges.
- Randall Sundrum model, discrete unevenly spaced graviton resonances.
- RS radion has an anomalous coupling to photons, giving rise to large production. Combine with LHC --> gluon anomaluos coupling
- $\gamma\gamma \to G_{\mu\nu}^{(n)} \to h\phi$ can test for the Higgs-radion mixing.
- Universal extra dimension model: KK states of quarks and leptons give rise to multijet or multi-lepton plus missing energies.
- Technicolor models: anomaly-type coupling of techni-pion to photons.


All technologies have advanced designs Serious prototyping will start after technology decision

Snowmass design: exploits small bunch spacing of warm machine

Gronberg/LLNL

NLC/JLC/CLICHE

ATF in Japan planning
 to do a γγ interaction region
 as part of their machine
 R&D Takahashi

TESLA: Exploit long bunch spacing to save laser power

CWS04, Paris

Conclusion I

- Physics motivations continues to get stronger:
 - OLD: Precision measurements of the Higgs ... $\Gamma_{\gamma\gamma}$
 - OLD: Extend physics reach of heavy Higgs searches
 - NEW: Sensitivity to CP violation in Higgs by exploiting interference effects in both light & heavy Higgses
 - NEW: Measurement of SUSY parameters like tan β
 - NEW: Unique opportunities in NEW-PHENOMENA
 - Techni-pion
 - Anomalous coupling of the radions
 - Light-on-Light Scattering...

Conclusion II

- Once technology decision is made:
 - Prototyping of gg technology will begin
 - Detector issues will be made in details

- Strong reason to believe that gC will be an important program in the future, either as:
 - An option of one of the 2 IR,
 - Or, as a 10% test of CLIC technology, while providing physics information that will complement the LHC & e+e- program.