Higgs and Electroweak Symmetry Breaking *Experimental Aspects*

> Tim Barklow SLAC LCWS 04, April 23, 2004

More Complete Picture of LC Capabilities is Emerging Through More Detalied Analyses:

- Beam Related Sys Errors in Higgs Mass Measurements
- Comprehensive Jet Flavor Tagging Analysis for BR(h→bb,cc,gg)
- Overlaid Events, Vertex Smearing & Crab Crossing in γγ→h→bb
- LHC/LC Complementarity:

M_A Determination From Higgs Branching Ratios Study of MSSM Higgs Bosons in the Intense-Coupling Regime

• New Results From Analyses at Ecm=1TeV:

Branching Fractions for Rare Higgs Decays Improved Higgs Self Coupling Measurement

Beam Related Systematics in Higgs Mass Measurement

Alexei Raspereza

LC Workshop, Paris 20/4/2004

Differential Luminosity Spectrum

Beamstrahlung → distortion of beam energy spectrum
 Parametrization :

 $f(x) = a_0 \delta(1-x) + a_1 x^{a2} (1-x)^{a3}, x = E_e / E_b$

- $f(x)dx = 1 \rightarrow 3$ independent parameters: a_0, a_2, a_3
- acollinearity spectrum in Bhabha events → differential luminosity spectrum measurement
- K.Moenig, LC-PHSM-2000-60 : $\delta_{a_i/a_i} \le 1\%$ with 3 fb⁻¹ @ $\sqrt{s} = 500$ GeV

 $\sqrt{s} = 350 \text{ GeV}$: $a_0 = 0.55, a_1 = 0.59, a_2 = 20.3, a_3 = -0.63$

Differential Luminosity Spectrum

 $\delta a_i \sim 10\%$: effect O(10MeV) on Higgs mass $\delta a_i \leq 1\%$: effect of O(MeV) on Higgs mass

Recoil mass energy scale error : $\delta M_{h} = 2.9 \delta E_{e}$

M_H measurement using kinematic fit of qqll and qqbb

Effect of beam spread - statistical accuracy degrades from 45 to 50 MeV in HZ \rightarrow bbqq channel from 70 to 80 MeV in HZ \rightarrow bbll channel if one assumes 0.5% beam spread for both e⁺ and e⁻ \Rightarrow statistical accuracy degrades from 72 to 76 MeV (6%) for TESLA \rightarrow NLC (*bbll*) from 46 to 48 MeV (4%) for TESLA \rightarrow NLC (*bbqq*)

	δM_h in MeV					
	TESLA	TESLA	NLC			
Decay mode	$\delta E/E=0$	δ E/E=0.1%	δ E/E=0.3%			
recoil mass	110	117	143			
$\operatorname{ZH} \to l^+ l^- q \overline{q}$	70	72	76			
$ZH \rightarrow q\overline{q}b\overline{b}$	45	46	48			
Combined	38	39	40			

MSSM theory error on m_h : (S. Heinemeyer)

Current theory uncertainty: $\delta m_h^{\text{theo,today}} \approx 3 \text{ GeV}$ Future theory uncertainty: $\delta m_h^{\text{theo,future}} \lesssim 0.5 \text{ GeV}$ necessary/possible Future parametric uncertainty: $\delta m_h^{\text{para,future}} = \mathcal{O}(0.2 \text{ GeV}) (m_t, \alpha_s)$

Flavor Tag

Vertex reconstruction: ZVTOP (from SLD)

- Tracks interpreted as probability tubes
- Vertex: crossings of these tubes
- Neural Net for Flavorseparation
- Training:HZ→qqll events at 350 GeV
- Most important input variable: vertex mass

Neural Net input: Vertex mass

20.04.2004, LCWS Paris

Neural Net performance

Comparison of fast Simdet and full Brahms simulation

- Simdet tuned with this Brahms version(91.2 GeV)
- C-Tag:Very good agreement
- B-Tag: Reasonable, differences: missing resolution tails

Vertex Detector dependence:

- •Two jet tag for Higgs events at 350 GeV (net used for this analysis!)
- •With/without innermost layer
- B-Tag: Very robust
- •C-Tag: Very sensitive benchmark

Thorsten Kuhl

20.04.2004, LCWS Paris

Results

• Combined result (all 3 channels, m_H=120 GeV, ECM=350 GeV, 500fb⁻¹):

- Δ(σ BR(H→bb)/σ_{SM}): 68.20± 0.75%
- $\Delta(\sigma BR(H\rightarrow cc)/\sigma_{sm})$: 3.01 ± 0.36%
- $\Delta(\sigma BR(H\rightarrow gg)/\sigma_{SM})$: 6.70 ± 0.55%
- Individual channels:

	Z→all	Z→qq	Z→II	Ζ→νν
$\Delta(\sigma BR)/\sigma BR(bb)$	1.1%	1.5%	3.0%	2.1%
$\Delta(\sigma BR)/\sigma BR(cc)$	12.1%	17.5%	33.0%	20.5%
$\Delta(\sigma BR)/\sigma BR(gg)$	8.3%	14.4%	18.5%	12.3%

- Error checked with 10 independent samples: no bias observed
- Different background composition of different selection channels is helpful
- Missing: Correct treatment of other Higgs decay channels (WW, ττ, ZZ), currently treaten as fixed background

Thorsten Kuhl

20.04.2004, LCWS Paris

Comparison

	$\Delta(\sigma BR)/(\sigma BR)(bb)$	$\Delta(\sigma BR)/(\sigma BR)(cc)$	$\Delta(\sigma BR)/(\sigma BR)(gg)$
This analysis	1.1%	12.1%	8.3%
TDR(Battaglia) *	0.9%	8.0%	5.1%
Snowmass(Brau,Potter)	1.6%	19.0%	10.4%
•			

*For comparison: Subtracting 2.2% error on total Higgs cross section to get ??? and use standard model fraction of fusion channel

TDR analysis (Marco Battaglia):

- Error for cc and gg 50% larger
- New selection more efficient in qqvv and qqll
- Difference: rather optimistic flavor-tag parametrization, no jet-jet confusion/splitting included

Snowmass analysis (Brau/Potter):

- Flavor tagging of American LC-group is a bit better (innermost layer at 1.2 cm)
- Differences:
 - More fancy analysis (used not all channels)
 - Cuts for flavor separation instead of 2-dim. Fit

Improved analysis on $\gamma\gamma \rightarrow higgs \rightarrow bb$

including overlaid events, vertex smearing and crab crossing for SM and MSSM

P. Nieżurawski, A. F. Żarnecki, M. Krawczyk

Faculty of Physics Warsaw University

Overview

Our analysis of precision $\sigma(\gamma\gamma \rightarrow higgs \rightarrow b\bar{b})$ measurement includes:

- realistic $\gamma\gamma$ -spectra
- b-tagging
- overlaying events $\gamma\gamma
 ightarrow hadrons$ (OE)
- **P** results for SM at $M_h = 120, 130, 140, 150, 160 GeV$
- results for MSSM at $M_A = 200, 250, 300, 350$ GeV with $\tan \beta = 7, M_2 = \mu = 200$ GeV (following M. Mühlleitner *et al.*)

Recent development:

- crossing angle
- primary vertex distribution

Crab-wise crossing of beams

P. Niezurawski

Par

Paris, April 2004

- p.5/11

NZK

SM summary, $M_h = 120-160$ GeV

P. Niezurawski

Paris, April 2004

NZ

NZ

MSSM, $M_A = 200-350$ GeV

P. Niezurawski

Paris, April 2004

-p.10/11

M_A determination from the Higgs branching ratios with full parametric uncertainties

K. Desch, E. Gross, S. Heinemeyer, G. Weiglein, L. Živković

18/04/2004

L. Živković

Indirect constrains on M_A

- Several analyses have been performed:
 - D. Asner et al., Eur. Phys. Jour. C 28 (2003) 27, hepex/0111056;
 - J. Guasch, W. Hollik and S. Peñaranda, Phys. Lett. B 515 (2001) 367, hep-ph/0106027;
 - M. Carena, H. Haber, H. Logan and S. Mrenna, Phys. Rev. D 65 (2002) 055005, E: *ibid* D 65 (2002) 099902, arXiv:hepph/0106116.

➤ They all kept fixed all parameters except one under investigation (i.e. M_A) assuming that SUSY parameters enter without any experimental or theoretical uncertainty ⇒ here we take into account all experimental and theoretical uncertainties

Indirect constrains on M_A Model is <u>SPS1a</u> with following errors assumed:

$$r \equiv \frac{[BR(h \to b\overline{b}) / BR(h \to WW^*)]_{MSSM}}{[BR(h \to b\overline{b}) / BR(h \to WW^*)]_{SM}}$$

with its prospective experimental measurements

Even though the experimental error of the two BR's is larger than that of the individual ones, it has stronger sensitivity

18/04/2004

- If we find just one Higgs boson at LHC, precision measurement at LC would allow to tell its nature (SM or MSSM)
- We could put constraints on the mass of the CP-odd Higgs boson precision would be 20 (30)% for m_A equal to 600 (800) GeV
- If we find several Higgs bosons at LHC, precision measurement at LC would allow us to shed some light on the possible model

Search for the MSSM Higgses in the intense-coupling regime at a Linear Collider (TESLA)

Edward Boos

At least the lightest Higgs boson h must have a mass below some value of $130-135~{\rm GeV}$

In the decoupling regime H, A and H^{\pm} are heavy $M_A \sim M_H \sim M_{H^{\pm}}$ The lightest Higgs particle h is similar to the SM Higgs

Another, more complex, situation is when pseudoscalar A boson is not much larger than h, and $\tan \beta$ is large.

Masses could be rather close.

Widths are large.

Couplings and Br-fractions in some cases are significantly different from SM or decoupling regime.

So, the phenomenology is different.

Such a scenario was called the Intense-coupling regime (E.B., A.Djouadi, M.Mühlleitner, A.Vologdin)

Total Width and Branching Fractions

How to resolve?

At the LHC: Br($h, H, A \rightarrow \gamma \gamma$) ~ $10^{-5} - 10^{-6}$ - too small $b\bar{b}$ and $\tau^+\tau^-$ modes - energy resolution is not enough More promising - $\mu^+\mu^-$ Higgs decay in $b\bar{b} + h, H, A$ production: Br($h, H, A \rightarrow \mu^+\mu^-$) ~ $3 - 3.5 \ 10^{-4}$, Energy resolution for muons ~ $1 - 1.5 \ GeV$, Tagging b-jets

At LC a multichannel analysis should be used:

- 1. $b\bar{b}l^+l^-$ mode using recoil mass for the Higgsstrahlung
- 2. $b\bar{b}b\bar{b}$ and/or $b\bar{b}\tau^+\tau^-$ modes for the Higgs pair production

Conclusions

- The intense coupling regime one of the most difficult scenario to be resolved completely
 (At the LHC - one can separate states if mass differences are about 5 GeV or more)
- At LC h and H masses could be measured to about 80-280 MeV accuracy at energies about 300 GeV and 500 fb^{-1} lumi in the 2 leptons + 2 b-jets mode using the recoil mass technique
- Mass of the A Higgs bosons can be measured to a similar accuracy in the 4 b-jet mode (Ah+AH) using measured values M_h and M_H and applying the "combinatorial mass difference" analysis

Higgs Coupling Measurements at 1 TeV (T. Barklow)

Take cue from Battaglia & DeRoeck results for $B_{h \to \mu\mu}$ at CLIC and investigate branching fraction measurements in WW fusion at a 1 TeV LC.

$e_{pol}^{-} = -80\%$	L = 500 (10)	$(000) fb^{-1}$	for \sqrt{s}	=350(10)	00) GeV:
		Higgs Mass (GeV)			
$\sqrt{s} \; (\text{GeV})$	$e_{\rm pol}^+$ (%)	120	140	160	200
350	0	110280	89150	69975	37385
350	+50	159115	128520	100800	53775
1000	0	386550	350690	317530	259190
1000	+50	569750	516830	467900	382070

Results presented for $h \rightarrow b\overline{b}, W^+W^-, gg, \gamma\gamma, ZZ$

No results for $h \to c\overline{c}, \tau^+\tau^-$ since detailed charm-tagging beyond scope and Higgs mass resolution for $h \to \tau^+\tau^-$ severely degraded by neutrinos.

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

$$\downarrow \rightarrow b\overline{b}$$

$$AB_{bb} / B_{bb} = 0.09$$

 $M_{h} = 200 \; GeV$

 $\sqrt{s} = 1 TeV$ $L = 1 ab^{-1}$

All 2,4,6-fermion and top-resonance 8-fermion backgrounds included

Background passing cuts (white histogram) is mostly

 $e^+e^- \rightarrow e^+e^-W^+W^-$

Red histogram: $h \rightarrow b\overline{b}$ Green histogram: $h \rightarrow WW$,

$$e^+e^- \rightarrow v_e \overline{v_e} h$$

 $| \rightarrow \gamma \gamma$

 $M_{h} = 120 \text{ GeV}$ $\sqrt{s} = 1 \text{ TeV}$ $L = 1 ab^{-1}$

All 2,4,6-fermion and top-resonance 8-fermion backgrounds included

Non-Higgs background (white histogram) is mostly

$$e^+e^- \rightarrow \nu\nu\gamma\gamma$$

Red histogram: $h \rightarrow \gamma \gamma$

Channel	$M_H = 120 \mathrm{GeV}$	$M_H = 140 \mathrm{GeV}$	$M_H =$	$160\mathrm{GeV}$
$H^0/h^0 \to b\bar{b}$	± 0.024	± 0.026	± 0	0.065
$H^0/h^0 \rightarrow c \bar{c}$	± 0.083	± 0.190		
$H^0/h^0 \rightarrow gg$	± 0.055	± 0.140		
$H^0/h^0 \to \tau^+ \tau^-$	± 0.050	± 0.080		
$\Gamma_{H \to X}$	$BR(H \to X)$	$M_H = 120 \mathrm{GeV}$	$140\mathrm{GeV}$	$160\mathrm{GeV}$
$WW = WW\nu\nu$	$H^0 \to WW$	± 0.061	± 0.045	± 0.134

TESLA TDR:

1	/\حT	ΔΝΔΙ	VCIC	

TIEV ANALISIS.	Higgs Mass (GeV)				
	115	120	140	160	200
$\Delta B_{bb}/B_{bb}$	± 0.015	± 0.016	± 0.018	± 0.020	± 0.090
$\Delta B_{WW}/B_{WW}$	± 0.024	± 0.020	± 0.018	± 0.010	± 0.025
$\Delta B_{gg}/B_{gg}$	± 0.021	± 0.023	± 0.035	± 0.146	
$\Delta B_{\gamma\gamma}/B_{\gamma\gamma}$	± 0.055	± 0.054	± 0.062	± 0.237	
$\Delta\Gamma_{tot}/\Gamma_{tot}$	± 0.035	± 0.034	± 0.036	± 0.020	± 0.050

A study of Higgs self-coupling measurement at about 1 TeV

ICEPP, Univ. of Tokyo S.Yamashita

@1TeV 2 main modes

Λ measurement sensitivity

A quick simulation study has been performed for $E_{em}=1$ TeV under the condition:

 $- \delta E_{jet}/E_{jet} \sim 30\%/\sqrt{E_{jet}}(GeV)$

- 4b tag efficiency ~ 80%, eff for non-4b < a few %
 - $I_{\text{lumi}} = 1 \text{ ab}^{-1}$ e beam Pol ~ 80 %

only hh \rightarrow bbbb decay mode (Br(hh \rightarrow bbbb)~47%) analyzed.

Likelihood selection \rightarrow overall signal eff ~ 32 % for vvhh

~ 22 % for Zhh $(Z \rightarrow qq, l^+l^-)$

For $M_h=120 \text{ GeV: } \Lambda$ measurement sensitivity (only $hh \rightarrow bbbb$ only)for $\Lambda = \Lambda_{SM}$ $\Lambda/\Lambda_{SM}=1.0 +0.13 -0.11 (1\sigma)$ 0.78 - 1.32 (95% CL) $\Lambda/\Lambda_{SM}=0.6$ $0.6 +0.10 -0.07 (1\sigma)$ 0.45 - 0.77 (95% CL) $\Lambda/\Lambda_{SM}=1.4$ $1.4 +0.14 -0.18 (1\sigma)$ 1.08 - 1.70 (95% CL)

Analysis is premature, and can increase the sensitivity. - e.g. when non-b decay of Higgs is included (especially important for $M_h>130$ GeV)

Relative phase (and sign) of Λ can be measured using interference comparing results from Zhh and fusion processes, or results of different E_{em} 's.

At Jeju LCWS 2002 result was $\delta\Lambda/\Lambda = 0.20$ for 2ab⁻¹ at Ecm=500 GeV

Summary Higgs Experimental LCWS 2004

- Beam related systematic errors have been evaluated for the Higgs mass measurement.
- Jet flavor tagging efficiency, purity for Higgs decays appears to be understood.
- Very detailed systematic error study has been performed for $\gamma\gamma \rightarrow h \rightarrow bb$ and no problems found.
- Nice examples of LHC/LC complementarity found in Higgs physics.
- Ecm=1TeV can be used to probe rare Higgs decays and measure Higgs self-coupling to 10%.