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More Complete Picture of LC Capabilities is
Emerging Through More Detalied Analyses:

Beam Related Sys Errors in Higgs Mass Measurements

Comprehensive Jet Flavor Tagging Analysis for
BR(h->bb,cc,gg)

Overlaid Events, Vertex Smearing & Crab Crossing in
vy=>h->bb

LHC/LC Complementarity:

M, Determination From Higgs Branching Ratios

Study of MSSM Higgs Bosons in the Intense-Coupling Regime
New Results From Analyses at Ecm=1TeV.:

Branching Fractions for Rare Higgs Decays
Improved Higgs Self Coupling Measurement



gam Related Systematics in Higgs
Mass Measurement

Alexel Raspereza

LC Workshop, Paris 20/4/2004



ferential Luminosity Spectr

: Beamstrahlung — distortion of beam energy spetrum
» Parametrization :
f(x) = aﬂﬁ(l—x)+alxﬂz(l—x)ﬂ3, x=E/E w1

. TESLA 350GeV
ESLA 500GeV
“TESLAB00GEN
NLC '500GeV
NLC :1000GeV

f(x)dx =1 = 3 independent
parameters: a, a , a
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* acollinearity spectrum in Bhabha N
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Vs =350 GeV : a =0.55, a =0.59, a =20.3, a =-0.63
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0a ~10% :effect O(10MeV) on Higgs mass
0a <1% :effect of O(MeV) on Higgs mass



Simdet Detector Simulation of e+e- 2 Zh

300
250 f
200 f
150 f

100 [

50

300

250

200

150

100

50

7 >ee ,uu
ee,uu

100 110 120 130 140 150 160

- | ] | ] ] ] ] =

100 110 120 130 140 150 160

Recoil Mass (GeV)
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Recoil Mass Results:

Si=O.3%
NLC °
OM, =143 MeV
o, =0.1%
TESLA
OM, =117MeV

Recoil mass energy scale error : 0 M, =2.90E_



M,, measurement using kinematic fit of qqll and qqgbb

Energy scale error

OM,=1.00E, (gqll)
OM,=0.80E, (bbqq)

SEH = BE&: 425 MeV results in a mass shift

~ 25 MeV for HZ qqll
~ 20 MeV for HZ bbqq

Effect of beam spread
- statistical accuracy degrades
from 45 to 50 MeV in HZ — bbgq channel

from 70 to 80 MeV in HZ — bbl/ channel
if one zlxsume beam spread for both e” and ¢

—> statistical accuracy degrades
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from 72 to 76 MeV (6%) for TESLA— NLC (bbll)
from 46 to 48 MeV (4%) for TESLA— NLC (bbgqq)
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oM, in MeV

TESLA  TESLA NLC
Decay mode OE/E=0 O0E/E=0.1% oE/E=0.3%
recoil mass 110 117 143
Z/H - ["l"qq 70 72 76
ZH — qqbb 45 46 48
Combined 38 39 40

MSSM theory error on m, : (S. Heinemeyer)

Current theory uncertainty: fi-miheo'm”w ~ 3 GeV

theo.future

Future theory uncertainty: ;_‘ﬁm-ah < 0.5 GeV necessary/possible

para.future

Future parametric uncertainty: dm; = 0 (0.2 GeV) (my, as)



Flavor Tag

Vertex reconstruction:
ZVTOP (from SLD)
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* Vertex: crossings of these
tubes

Neural Net for Flavor-
separation

* Training:HZ—qqll events at
350 GeV

* Most important input
variable: vertex mass
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Thorsten Kuhl 20.04.2004, LCWS Paris



Neural Net performance

Comparison of fast Simdet
and full Brahms simulation

*Simdet tuned with this Brahms
version(91.2 GeV)

*C-Tag:Very good agreement

*B-Tag: Reasonable, differences:
missing resolution tails
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Vertex Detector dependence:

*Two jet tag for Higgs events at 350
GeV ( net used for this analysis!)

*\With/without innermost layer
*B-Tag: Very robust
*C-Tag: Very sensitive benchmark
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Results

* Combined result (all 3 channels, m =120 GeV, ECM=350 GeV, 500fb™):
+ A(c BR(H—bb)/o_ ): 68.20+ 0.75%
» A(c BR(H—cc)/o_ ): 3.01£0.36%
e A(c BR(H—gg)/s_ ): 6.70 +0.55%

* Individual channels:

/—all Zoaq Z-ll Zovy
A(oc BR)/c BR(bb) 1.1% 1.5% 3.0% 2.1%
A(c BR)/o BR(cc) | 121% | 17.5% 33.0% 20.5%
A(c BR)/c BR(gg) 83% | 144% 185% 12.3%

* Error checked with 10 independent samples: no bias observed

* Different background composition of different selection channels is helpful

* Missing: Correct treatment of other Higgs decay channels (WW, 11, ZZ),
currently treaten as fixed background

Thorsten Kuhl 20.04.2004, LCWS Paris 12



Comparison

A(cBR)/(cBR)(bb)  A(cBR)/(cBR)(cc) A(cBR)/(cBR)(gg.

This analysis 1.1% 12.1% 8.3%
TDR( Battaglia) * 0.9% 8.0% 9.1%
Snowmass(Brau, Potter) 1.6% 19.0% 10.4%

“For comparison: Subtracting 2.2% error on total Higgs cross section to get 777
and use standard model fraction of fusion channel

* [DR analysis (Marco Battaglia):
* Error for cc and gg 50% larger
* New selection more efficient in qqvv and qqll
* Difference: rather optimistic flavor-tag parametrization, no jet-jet
confusion/splitting included

*Snowmass analysis (Brau/Potter):
* Flavor tagging of American LC-group is a bit better ( innermost layerat 1.2 cm)
* Differences:
* More fancy analysis (used not all channels)
* Cuts for flavor separation instead of 2-dim. Fit

Thorsten Kuhl 20.04.2004, LCWS Paris 13



Improved analysis on 7y — higgs — bb

including overlaid events,

vertex smearing and crab crossing

for SM and MSSM

P. Niezurawski, A. F. Zarnecki, M. Krawczyk




Our analysis of precision o(yy — higgs — bb) measurement includes:

realistic yy-spectra
b-tagging
overlaying events vy — hadrons (OE)

results for SM at M;, = 120, 130, 140, 150, 160 GeV

results for MSSM at M 4 = 200, 250, 300, 350 GeV
with tan 8 = 7, My = p = 200 GeV (following M. Muhlleitner et al.)

Recent development:
crossing angle

primary vertex distribution



g = \/%(ag+a§t3n2(ac/2)) J;:Jy/\/g J;:JZ/V/E

Bunch: o, =140nm o, =7nm o, =0.3mm

Primary vertex: o, =3.6um o, =5nm o, =0.2mm

a. = 34 mrad
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M, determination from the
Higgs branching ratios
with full parametric uncertainties

K. Desch, E. Gross, S. Heinemeyer, 6. Weiglein, L. Zivkovic¢

18/04/2004 L. Zivkovic 1



Indirect constrains on M,

» Several analyses have been performed:

- D. Asner et al.,, Eur. Phys. Jour. C 28 (2003) 27, hep-
ex/0111056;

- J. Guasch, W. Hollik and S. Pefiaranda, Phys. Lett. B 515
(2001) 367, hep-ph/0106027;

- M. Carena, H. Haber, H. Logan and S. Mrenna, Phys. Rev. D 65
(2002) 055005, E:/bid D 65 (2002) 099902, arXiv:hep-
ph/0106116.

» They all kept fixed all parameters except one under
investigation (i.e. M,) assuming that SUSY
parameters enter without any experimental or
theoretical uncertainty = here we take info account
all experimental and theoretical uncertainties

18/04/2004 | Zivkovié 5]



Indirect constrains on M,

» Model is SPS1la with following errors assumed:

ﬂ'msbl i"rr‘ista.?. Amglulr'.t:l 4 i's"ms’ril ‘ﬂmh TC[I"IPJ - From LC for
tanp) = 10
5.7 GeV [ 6.2 GeV [ 6.5 Gev [ /2 Gev |05 ceV|  10%
:' \ .
We assume that we can measure Precise measurement of m;, with an
lighter stop at LC, m ~ 400 GeV error from theory included

~ We compare theoretical prediction of

[BR(h — bb )/ BR(h —WW')], ...,
[BR(h—> bb)/ BR(h — WW )],

}1‘

with its prospective experimental measurements

» Even though the experimental error of the two BR's is

larger than that of the individual ones, it has stronger
sensitivity

18/04/2004 L. Zivkovic 10



Conclusions

» If we find just one Higgs boson at LHC, precision
measurement at LC would allow to tell its nature
(SM or MSSM)

~ We could put constraints on the mass of the CP-odd
Higgs boson
precision would be 20 (30)% for m, equal o 600
(800) GeV

» If we find several Higgs bosons at LHC, precision
measurement at LC would allow us to shed some light
on the possible model

18/04/2004 L. Zivkovié

23



Search for the MSSM Higgses in the intense-coupling regime

at a Linear Collider (TESLA)
Fdward Boos

At least the lightest Higgs boson A must have a mass below some value of
130 — 135 GeV

In the decoupling regime H, A and H* are heavy My ~ My ~ M+

The lightest Higgs particle £ is similar to the SM Higgs

Another, more complex, situation is when pseudoscalar A boson is not

much larger than h, and tan [ is large.

Masses could be rather close.

Widths are large.

Couplings and Br-fractions in some cases are significantly different from
SM or decoupling regime.

So, the phenomenology is different.

Such a scenario was called the Intense-coupling regime

(E.B.. A.Djouadi, M.Mihlleitner, A.Vologdin)



Total Width and Branching Fractions
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How to resolve?

At the LHC:

Br(h,H, A — ~vv) ~ 1075 — 107° - too small

bb and 777~ modes - energy resolution is not enough

More promising - p*p~ Higes decay in bb + h, H, A production:
Br(h.H A — putp=) ~3—3.510"", Energy resolution for muons
~ 1 —1.5 GeV, Tagging b-jets

At LC a multichannel analysis should be used:

1. bl 1~ mode using recoil mass for the Higgsstrahlung

2. bbbb and/or bbr 7~ modes for the Higgs pair production

Conclusions

The intense coupling regime - one of the most difficult scenario to be resolved
completely
(At the LHC - one can separate states if mass differences are about 5 GeV or more)

At LC - h and H masses could be measured to about 80-280 MeV accuracy at
energies about 300 GeV and 500 fb~! lumi in the 2 leptons + 2 b-jets mode using

the recoil mass technique

Mass of the A Higgs bosons can be measured to a similar accuracy in the 4 b-jet
mode (Ah+AH) using measured values M}, and My and applying the

"combinatorial mass difference” analysis



Higgs Coupling Measurements at 1 TeV (T. Barklow)

Take cue from Battaglia & DeRoeck results for B, _
at CLIC and investigate branching fraction measurements
in WW fusionata 1 TeV LC.

e, =—80% L=500(1000) /b~ for +s=350(1000) GeV :

Hices Mass (GeV)
/5 (GeV) ety (%) 120 140 160 200
350 0| 110250 89150 6GY9TH 37385
350 +50 | 159115 128520 100800 53775
1000 0 ] 386550 350690 317530 259190
1000 +50 | 569750 516830 467900 382070

Results presented for  h — bb, W'W ™, gg, Yy, ZZ

No results for h—>cc,t™t~  since detailed charm-tagging beyond scope and
Higgs mass resolution for } >1t't~ severely degraded by neutrinos.
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M, =120 GeV
Js =1TeV
L=1ab"

All 2,4,6-fermion and
top-resonance 8-fermion
backgrounds included

Non-Higgs background
(white histogram) is mostly
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Channel My = 120GeV | My = 140GeV | My = 160 GeV
H"/h" — bb + 0.024 + 0.026 + 0.065
HY /LY — ce + 0.083 + 0.190
TESLA TDR: HY/h" — gg + 0.055 + 0.140
H/hY — 777~ + 0.050 + 0.080
Ui x BR(H — X) | My = 120GeV | 140 GeV | 160 GeV
WW=WWw | H — WW +0.061 +0.045 | +0.134

1 TeV ANALYSIS:

115 120 140 160 200

A By, / By +0.015 +0.016 +0.018 =£0.020 =£0.090
AByww /Byw | £0.024 £0.020 £0.018 40.010 40.025
ABy,/ By, +0.021 £0.023 £0.035 40.146
AB.., /B, +0.055 40.054 +£0.062 =£0.237
AT ot/ Tior +0.035 40.034 40.036 40.020 =40.050




A study of Higgs self-coupling
measurement at about 1 TeV

ICEPP, Univ. ol Tokvo
S Y amashita

@]TeV 2 main modes
total cross section
b
(e ee —>Zhh Y.Yasui et al
e'e ——>hhvw W-fusion

Combined

solid : m,, = 120 GeV
dashed : my, = 180 GeV

xete” — (WTW™)\vo — HHup

root (s) [GeV]




Likeliliood selection

. | After Likelihood selection
(~OPAL liggs scheme) ‘

lgino- . . . . ; .
Using: Scparate “*Zhh” & ‘fusion-channcl
Compatibility to vvhh vwZZ vvZhete..

vvhh selection
vwhh channel

vvbbbb Cr 3
fusion

0 ]
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04.4.20 satoru@icepp.s.u-tokyo.ac.jp 7



A measurement sensitivity
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A quick simulation study has been performed [or E_ =1 TeV under the condition:
—  OE.E, ~30%/ E(GeV)
— 4b tag ctficiency ~ 80%, ctf for non-4b < a few %
I,..=1ab' ¢ beam Pol ~ - 80 %
only hh—=bbbb decay mode (Br(hh—bbbb)~47%) analyzed.

Likelihood selection — overall signal eff ~ 32 % for vvhh
~ 22 % tor Zhh (Z—qq.l*1)

For M, =120 GeV: A measurement sensitivity (only hh—bbbb only)

for A = A, AA,=1.0 +0.13 -0.11 (1o) 0.78 - 1.32 (95%CL)

ATA,,=0.6 0.6 +0.10-0.07 (1) 0.45-0.77 (95%CL)

ANA =14 [.4 +0.14 -0.18 (lo) [.08 - 1.70 (95%CL)
Analysis 1s premature, and can increase the sensitivity. - ¢.g. when non-b decay

of Higgs 1s included (especially important for M, >130 GeV)

Relative phase (and sign) of A can be measured using interference comparing
results from Zhh and fusion processes, or results of different E_ s.

At Jeju LCWS 2002 result was d/NVA = 0.20 for 2ab-! at Ecm=500 GeV



Summary Higgs Experimental
LCWS 2004

Beam related systematic errors have been
evaluated for the Higgs mass measurement.

Jet flavor tagging efficiency, purity for Higgs
decays appears to be understood.

Very detailed systematic error study has been
performed for yy=>h->bb and no problems found.

Nice examples of LHC/LC complementarity found
In Higgs physics.

Ecm=1TeV can be used to probe rare Higgs
decays and measure Higgs self-coupling to 10%.
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