

Pair production of charged and neutral Higgs bosons at CLIC

A. Ferrari Uppsala University, Sweden

Theoretical background

In the Standard Model, one complex scalar doublet is responsible for the electroweak gauge symmetry breaking, and there is thus only one physical Higgs boson h^0 .

In several extensions of the Standard Model, and in particular the MSSM, the Higgs sector consists of two complex scalar doublets and there are five Higgs bosons.

- two CP-even neutral h^0 and H^0 ,
- one CP-odd neutral A^0 ,
- two charged H^+ and H^- .

In addition to the four Higgs masses, there are also two additional parameters:

- the ratio $tan\beta$ of the vacuum expectation values of the two neutral Higgs fields,
- the mixing angle α in the neutral CP-even sector.

In the MSSM, only two parameters are independent, in general they are chosen to be m_A and $tan\beta$.

AIM OF THE STUDY: estimate the discovery reach for new heavy charged and neutral Higgs bosons at CLIC + accurate measurements of m_A and $tan\beta$.

Cross section calculations

Two processes of interest: $e^+e^- \to H^+H^-$ and $e^+e^- \to A^0H^0$.

At tree level, very good agreement between PYTHIA simulations and analytical calculations.

At CLIC, one must take into account the high-energy beam-beam effects in the calculation of the cross-section, and in particular the luminosity spectrum after including beamstrahlung.

In the following, we consider an integrated luminosity of 3000 fb^{-1} .

Possible final states

• $e^+e^- \to H^+H^-$

The charged Higgs bosons can decay into fermions pairs, i.e. tb or $\tau\nu_{\tau}$. Generally, $H^{\pm} \rightarrow tb$ is the dominant decay mode.

•
$$e^+e^- \to A^0 H^0$$

The neutral Higgs bosons generally decay into tt, bb or $\tau\tau$.

Note: only standard decays are considered in this study!

Reconstruction of $e^+e^- ightarrow A^0 H^0 ightarrow bbbb$

At large $tan\beta$, neutral Higgs bosons mostly decay into bb pairs, so the final state of interest generally consists of 4 b tagged jets.

- there are three ways to combine 4 *b*-jets into 2 *bb* pairs,
- choose the combination with the smallest difference between the two bb invariant masses,
- apply a mass constrained kinematical fit in order to improve the resolution.

Here, $m_A = 876$ GeV, the hadronic background is integrated over 15 bunch crossings, and the *b* tagging efficiency is set to 90%.

Reconstruction of $e^+e^- ightarrow A^0 H^0 ightarrow tttt$

At small $tan\beta$, neutral Higgs bosons mostly decay into tt pairs, so the final state of interest generally consists of tttt, i.e. 4 b tagged jets and 8 non-b tagged jets coming from W bosons which decayed hadronically.

- test the presence of four W bosons decaying hadronically,
- reconstruct each t quark from a W candidate paired with one b tagged jet,
- reconstruct A and H by combining four t candidates into two tt pairs (for this purpose, the combination with the smallest mass difference is chosen),
- apply a mass constrained kinematical fit in order to improve the resolution.

Here, $m_A = 576$ GeV, the hadronic background is integrated over 15 bunch crossings, and the *b* tagging efficiency is set to 90%.

Reconstruction of $e^+e^- ightarrow A^0 H^0 ightarrow tbtb$

For intermediate values of $tan\beta$, neutral Higgs bosons may decay into tt or bb pairs, so one possible final state consists of tbtb, i.e. 4 b tagged jets and 4 non-b tagged jets coming from W bosons which decayed hadronically.

- test the presence of two W bosons decaying hadronically,
- reconstruct each t quark from a W candidate paired with one b tagged jet,
- reconstruct the neutral Higgs bosons by pairing respectively the two t candidates and the two remaining b tagged jets,
- apply cuts on the *tt*, *bb* and *tb* invariant masses to distinguish between charged and neutral Higgs bosons pair production,
- apply a mass constrained kinematical fit in order to improve the resolution.

Here, $m_A = 736$ GeV, the hadronic background is integrated over 15 bunch crossings, and the *b* tagging efficiency is set to 90%.

Reconstruction of $e^+e^- ightarrow H^+H^- ightarrow tbtb$

After the pair production of charged Higgs bosons, the final state generally consists of tbtb, i.e. 4 b tagged jets and 4 non-b tagged jets coming from hadronic decays of 2 W bosons.

- test the presence of two W bosons decaying hadronically,
- reconstruct each t quark from a W candidate paired with one b tagged jet,
- reconstruct each charged Higgs boson from one t candidate paired with one of the two remaining b tagged jets,
- apply cuts on the *tt*, *bb* and *tb* invariant masses to distinguish between charged and neutral Higgs bosons pair production,
- apply a mass constrained kinematical fit in order to improve the resolution.

Here, $m_A = 736$ GeV, the hadronic background is integrated over 15 bunch crossings, and the *b* tagging efficiency is set to 90%.

A. Ferrari (Uppsala University) LCWS'04, Paris 19-23 april 2004

Discovery potential at CLIC

The most significant Standard Model background processes are those leading to genuine *bbbb*, *tttt* or *tbtb* final states. A careful analysis with CompHEP shows that quark-antiquark pairs usually come from a virtual γ/Z boson, a gluon or a light Higgs boson.

For the A^0H^0 signal, tt or bb pairs come from 2 heavy objects having the same mass: the topology is thus very different from the Standard Model background, which is easily reduced. For the H^+H^- signal, the Standard Model background can be reduced as well, but not as efficiently as for A^0H^0 .

Charged Higgs sector:

Discovery up to 1.25 TeV (1.21 TeV) for small (large) $tan\beta$.

Neutral Higgs sector:

Here, the integrated luminosity is 3000 fb^{-1} .

Discovery limits vs b-tagging

Many processes, such as W boson or t quark pair production, lead to multi-fermions final states, with two or less b quarks. Cuts on the jet multiplicity, the masses of the intermediate states and the number of b jets should allow good reduction (suppression) of these backgrounds. But, one may need to accept a reduction of the b-tagging efficiency to better control the non-b jet misidentification rate.

Having assumed no contribution from the background processes with two or less *b* quarks, the discovery limits at small and large $tan\beta$ were estimated as a function of the *b* tagging efficiency.

b tagging efficiency	90%	80%	70%	60%
c-jet misidentification rate	45%	20%	10%	4%
uds-jet misidentification rate	20%	7%	0.5%	0.2%
H^+H^- discovery, small $tan\beta$ (TeV)	1.25	1.22	1.18	1.12
H^+H^- discovery, large $tan\beta$ (TeV)	1.21	1.17	1.12	1.06
A^0H^0 discovery, small $tan\beta$ (TeV)	1.16	1.07	0.97	0.81
A^0H^0 discovery, large $tan\beta$ (TeV)	1.39	1.34	1.28	1.20

Discovery limit up to 1 TeV and beyond, for all values $tan\beta$: better than LHC!!

Precision measurements

m_A (in GeV)	576	736	876			
$e^+e^- \to H^+H^- \to tbtb(1)$						
$\delta(\sigma \cdot \mathrm{Br}^2)/(\sigma \cdot \mathrm{Br}^2)$	3.6%	4.9%	5.6%			
$\delta m/m$	0.4%	0.7%	0.9%			
$e^+e^- \rightarrow A^0 H^0 \rightarrow bbbb$ (2)						
$\delta(\sigma \cdot \mathrm{Br}^2)/(\sigma \cdot \mathrm{Br}^2)$	3.3%	4.7%	6.2%			
$\delta m/m$	0.4%	0.4%	0.4%			
$e^+e^- \rightarrow A^0 H^0 \rightarrow tttt (3)$						
$\delta(\sigma \cdot \mathrm{Br}^2)/(\sigma \cdot \mathrm{Br}^2)$	7.5%	10.0%	15.3%			
$\delta m/m$	1.2%	1.8%	2.7%			
$e^+e^- \rightarrow A^0 H^0 \rightarrow tbtb$ (4)						
$\delta(\sigma \cdot \mathrm{Br}^2)/(\sigma \cdot \mathrm{Br}^2)$	10.2%	13.4%	20.2%			
$\delta m/m$	1.6%	2.1%	2.7%			

The mass and the signal rate were estimated by comparing samples of "real" and "simulated" event samples, in terms of χ^2 .

(1)
$$\operatorname{Br}(H^{\pm} \to tb) = 100\%$$

(2) $\operatorname{Br}(A^0/H^0 \to bb) = 87\%$
(3) $\operatorname{Br}(A^0/H^0 \to tb) = 100\%$
(4) $\operatorname{Br}(A^0/H^0 \to bb) = \operatorname{Br}(A^0/H^0 \to bb) \simeq 46\%$

Here, the integrated luminosity is 3000 fb^{-1} .

A. Ferrari (Uppsala University) LCWS'04, Paris

Determination of $tan\beta$

Let us define
$$r = \sqrt{\frac{\operatorname{Br}(H^0 \to bb) \cdot \operatorname{Br}(A^0 \to bb)}{\operatorname{Br}(H^0 \to tt) \cdot \operatorname{Br}(A^0 \to tt)}}.$$

The error on r can be written as:

$$\delta r = \frac{r}{2} \sqrt{\left(\frac{\delta(\sigma \cdot \mathbf{Br}^2)}{\sigma \cdot \mathbf{Br}^2}\right)_{bbbb}^2 + \left(\frac{\delta(\sigma \cdot \mathbf{Br}^2)}{\sigma \cdot \mathbf{Br}^2}\right)_{tttt}^2}.$$

Knowing how r depends on $tan\beta$ and the statistical errors for the signal rate of $e^+e^- \rightarrow A^0H^0 \rightarrow bbbb$ and $e^+e^- \rightarrow A^0H^0 \rightarrow tttt$ at various values of $tan\beta$, one can estimate the absolute error $\delta tan\beta$.

 $\rightarrow tan\beta$ can be determined with a relative error of less than 20% (respectively 10%) in the 3-13 (respectively 4-10) range.

Conclusion

New charged and neutral Higgs bosons appear in several extensions of the Standard Model, including Supersymmetry. LHC is likely to discover these new particles up to masses of a few hundred GeV... however not in the whole MSSM phase space, and in particular not in the intermediate $tan\beta$ range.

CLIC will extend the LHC discovery reach to Higgs masses beyond 1 TeV and all values of $tan\beta$ should be accessible.

Precision measurements can be performed with a χ^2 -analysis. The Higgs mass m_A can be measured with a precision of about 1%. In the 4-10 range, $tan\beta$ can be determined with a good accuracy (10% or less).

Outlooks: combine the charged and neutral sectors into one single analysis, and consider the influence of decays into supersymmetric particles.