Experimental Implication for a Linear Collider of SUSY Dark Matter Scenario

- P. Bambade, M. Berggren, F. Richard, Z. Zhang and H.-U. Martyn
- 1. Motivation: WMAP \leftarrow ? \rightarrow Small \triangle M=m_{stau}-m_{χ}
- 2. Detectability of stau/smuon with small ΔM ? Precision on DM relic density @ a future LC? Effect of crossing-angle vs. head-on collisions?
- 3. Summary

Motivation

- Current precision on Dark Matter from WMAP: 10% or in 2σ range: 0.094< $\Omega_{DM}h^2$ <0.129
- Future precision expected from Planck: 2%
- Questions for colliders:
 What are these non-baryonic DM?
 Any connection between DM and χ LSP in SUSY?
 How precise can a LC measure DM relic density?

$$\Omega_{\tilde{\chi}_1^0}h^2 = m_{\tilde{\chi}_1^0}n_{\tilde{\chi}_1^0}\sim \int_0^{x_f} dx (\langle \sigma_{ann}\nu \rangle)^{-1}$$

LCWS04@Paris 19-23/04/2004

DM vs. mSUGRA SUSY Model

 \rightarrow The precision on SUSY DM prediction depends on ΔM & thus

 $\delta m_{\chi} \rightarrow Needs smuon (or selectron) analysis$ $<math>\delta m_{s\tau} \rightarrow Needs stau analysis$

LCW504@Paris 19-23/04/2004

Smuon, Stau Mass Difference vs. LSP χ

 m_{stau} - m_{χ} comparable with intrinsic missing p_t due to crossing-angle ! Impact on the sleption detection & mass measurement?

LCWS04@Paris 19-23/04/2004

LSP & Smuon Mass Measurement Using End-Point Method

$$E_{\max,\min} = \frac{m_{\tilde{\mu}}}{2} \left(1 - \frac{m_{\chi_2}^2}{m_{\tilde{\mu}}^2}\right) \gamma(1 \pm \beta) \qquad \text{with } \beta = \sqrt{1 - \frac{4m_{\tilde{\mu}}^2}{s}}, \ \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

LCWS04@Paris 19-23/04/2004

Zhiqing Zhang (LAL, Orsay)

Precise LSP Mass Measurement from Sleptons

SPS 1a inspired model: m_{smu} =143GeV, m_{χ} =96GeV→135GeV → ΔM=8GeV, (LC-PHSM-2003-071) Ecm=400GeV, L=200pb⁻¹, P_e=0.8, P_{e+}=-0.6, σ=120fb

LCWS04@Paris 19-23/04/2004

Stau Analyses

- Much more difficult than smuon analyses:
 - \rightarrow Additional missing energies from neutrinos,
 - → Final state particles very soft: due to small △M<10GeV & little Lorentz boost</p>
- SM backgrounds are many orders of magnitude larger
 Need very efficient veto at low angles
- Additional complication if crossing-angle collisions
- Two different/exclusive strategies: Strategy one: when m_{stau} ~Ecm/2 & signal cross section small \rightarrow event counting (in 1-1,1-3,3-3 prong except eX,µµ) Strategy two: when m_{stau} <<Ecm/2 & signal cross section large \rightarrow energy spectrum analysis (in π , ρ , 3π channels)

Signal/Background Ratio

e.g. for Benchmark D, Δ M=217[m_{stau}]-212[m_{χ}]=5GeV, Ecm=500GeV

•	Signal	B/S
	e+e- → sτ+ sτ-: σ~10fb	
•	Background processes considered	
	$\gamma * \gamma * \rightarrow \tau^+ \tau^-(E_+>4.5 \text{GeV}): \sigma \sim 4.3 \times 10^5 \text{ fb}$	4.3×10 ⁴
	$\rightarrow \mu^+\mu^-$ (E_+>2GeV): $\sigma \sim 5.2 \times 10^6 \text{ fb}$	5.2x10 ⁵
	hadrons (direct*direct dominant)	
	ccbar σ~8.2x10 ⁵ fb	8.2×10 ⁴
	\rightarrow WW	
	e ⁺ e ⁻ →μ ⁺ μ ⁻ , τ ⁺ τ ⁻ : σ~1.0x10 ³ fb	1.0x10 ²
	\rightarrow WW	
	e+e-→sμ+sμ-: σ~7.2fb	

LCWS04@Paris 19-23/04/2004

Comparison of Different Hadronic Subprocesses

γ*γ* process:	[s] (pb)
VDM*VDM:	15770
Anom*Anom:	505
Direct*Direct:	2370
VDM*Anom:	5554
VDM*Direct:	2246
Anom*Direct:	483
DIS*VDM:	909
DIS*Anom:	435

Dominated by
 Direct*Direct at
 large P_{Tmiss}

LCWS04@Paris 19-23/04/2004

Identify Energetic e⁺/e⁻ from γγ out of Huge Number Soft Beamstrahlung Background

- e^+/e^- from $ee \rightarrow eeff$: At most 2e/event but energetic
- Beamstrahlung background: Huge number $e_{,\gamma}/event$ but soft e.g. the energy density/event in LCAL @ z=3.7m simulated by K. Buesser

Importance of Low Angle Veto

Angular distribution of the spectator e from $ee \rightarrow ee\tau\tau$

Total $\sigma \sim 0.43 \times 10^6$ fb of which 3/4 with both e's staying in the beampipe corresponding to the peak at zero in the inset

Analysis cuts reject most of the background

An ideal veto with $P_{T,min}$ >0.8GeV is sufficient to suppress all remaining $\gamma\gamma \rightarrow \tau\tau$ background events except those with energetic μ/π at low angles

Examples of Discriminating Variables

Thrust axis angle in 3 dimension:

- Signals mainly centrally distributed
- Backgrounds mostly forward distributed

 $\begin{array}{l} \textbf{P}_{T} \text{ sum with respect to the thrust axis} \\ \textbf{in the transverse plane to the beam:} \\ \textbf{-} \ distribution \ shown \ after \ all \ other \ cuts} \\ \textbf{except} \ \rho_{T} \end{array}$

LCWS04@Paris 19-23/04/2004

Remaining Background in Cross-Angle Mode

10mrad half crossing angle

For an incoming beam hole of r=1.2cm the probability for a spectator e+/e- to enter the hole is 10^{-3} .

Remaining background events correspond (mainly) to those with e+/e- goes into the incoming beam hole.

Additional cuts remove essentially all these events.

A price to pay however: 25% efficiency reduction e.g. for benchmark point D @ Ecm=440GeV from ~8.5% to ~6.4%

LCW504@Paris 19-23/04/2004

Strategy One: Optimal Center of Mass Energy for Stau Mass Measurement

 Assuming negligible background and given the integrated luminosity: L the efficiency: ε Signal cross section: σ=Aβ³ (neglect ISR correction) with A~100, β=(1-4m²/s)^{1/2}
 → Observed events: N=LAβ³ε
 One can easily derive the relative stau mass precision:

QED correction: Large but known Coulomb correction: Known & small Width effect: small $[\Gamma/M\sim\alpha(\Delta M/M)^2]$

the relative stau mass precision: $dm/m = s/12m^2 [\beta/LA\epsilon]^{1/2}$ the optimal center of mass energy: $Ecm = s^{1/2} = 2m / [1-(N/LA\epsilon)^{2/3}]^{1/2}$

Note: This differs from a threshold scan measurement, → Little sensitivity to the σ shape & corrections @ threshold

LCWS04@Paris 19-23/04/2004

Relative Stau Mass Precision

Example with benchmark point D

- → Best sensitivity achieved with Ecm~2m: δ M~0.4GeV
- → Higher Ecm does not help
- → Higher integrated luminosity and efficiency do

LCWS04@Paris 19-23/04/2004

Strategy Two: Analyzing Energy Spetra for Stau Mass Measurement

SPA 1a inspired model & Benchmark D (below) studied in π , ρ , 3π channels

- \rightarrow Ecm=400 and 600GeV >> 2m_{stau} (m_stau=133, 217GeV)
- \rightarrow Signal cross section σ comfortably large (σ =140, 50fb) + Polarized beams
- \rightarrow Background rejection less severe than in the threshold region

LCWS04@Paris 19-23/04/2004

Results on the Stau Mass & Relic DM Density

	Strategy one:			(L=500fb ⁻¹)				
	Scenar	rio	A	С	D	G	J	
	ΔM	(GeV)	7	9	5	9	3	
	Ecm	(GeV)	505	337	440	316	660	
	σ	(fb)	0.216	0.226	0.279	0.139	1.35	
	Efficie	ncy (%)	13.6	17.3	8.5	17.2	1.4	
	δm _{stau}	(GeV)	0.42	0.15	0.40	0.12	>1.0	
ญ	$\rightarrow \delta \Omega h^2$	(%)	3.1	1.6	5.0	1.6	>14*	
<u>S</u>		• •						
	Strategy two:		(L=	200fb ⁻	1	300fl	o ⁻¹)	
5	Scenar	rio 🔪		SPS 1a	l	D		
2	ΔM	(GeV)	8	5	3	5		
Ξ	Ecm	(GeV)		400		600		
	σ	(fb)		140		50		
	Efficie	ncy (%)		18.5		7.6		
	δmetau	(GeV)	0.14	0.22	0.28	0.15		
	−−−−► δΩh²	(%)	1.7*	4.1*	6.7*	1.9		

LCWS04@Paris 19-23/04/2004 Zhiqing Zhang (LAL, Orsay)

*: Ωh²<0.094(WMAP lower limit)

Caveat: Background Underestimated?

Additional background from $\gamma\gamma$ and $\gamma\gamma^*$?

 \rightarrow Need to increase the actual $\gamma^*\gamma^*$ bkg statistics by ~10 to be safe

LCWS04@Paris 19-23/04/2004

Summary

- LSP and smuon masses precisely measurable @ small ΔM
- Stau mass measurement @ small △M very challenging Two different strategies studied
- Crossing-angle mode possible @ TESLA (but lower ε by 25% in stau analysis)
- e/ γ veto efficiency to be improved down to 5mrad Desirable to have μ/π veto down to 20mrad Veto is challenging for warm technology (pile-up)
- Depending on SUSY scenario, DM density precision @ LC can compete with expected precision from e.g. Planck

Mass Measurement in Case of Background

Mass precision degrades when background contribution increases

Veto efficiency & analysis cuts optimization essential

High integrated luminosity will always help

LCWS04@Paris 19-23/04/2004

Mixing Angle and Polarizations

Full cross section (γ +Z) differs from point-like cross section (γ) only for polarized beams.

For polarized beams cross section has also strong dependence on the mixing.

If combining L+R polarized data, the net dependence is much reduced.

LCWS04@Paris 19-23/04/2004

Main Selection Cuts for Staus (head-on)

- 1. Veto (energetic) forward electrons/photons against $\gamma\gamma$ and radiative events
- 2. No of charged tracks: 1 or 3 prongs, no 2 μ 's, charge conservation against non-tau decays, against $\mu\mu$ backgrounds
- 3. $15^{\circ} < \theta_{\text{thrust}} < 165^{\circ}$, acoplanarity angle < 160° against $\gamma\gamma$ and 2-fermion events
- 4. $P_{max} < 7 \text{ GeV}, P_{Tmiss} > 2.5 \text{ GeV}$

against smuon and 2-fermion events

5. ρ_T : P_t sum w.r.t. the thrust axis in transverse plane to the beam > 2.75 (or 2) GeV (P_{Tmiss} dependent) against $\gamma\gamma$

Resulting in an efficiency of ~ 8.5% (ideal detector+SGV acceptance) no bg events survive (ideal veto)

LCWS04@Paris 19-23/04/2004

Vetoing Energetic μ/π Down to 20mrad?

Background free stau detection needs this capability:

ee→eeμμ, **ee→ee**ττ:

 μ +e or τ +e visible in the detector \rightarrow signal like

Another e in the beam-pipe, another μ or $\tau \rightarrow \mu/\pi$ (energetic) @ low angle

→New challenge in forward instrumentation !

LCW504@Paris 19-23/04/2004