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Introduction

Physics Motivation: )
Want to study vy — H — bb, vy — WTW—, vy — SUSY
= need /s = 120GeV — maximum possible with high luminosity.

TESLA bunch structure: bunch trains with 2800 bunches/train and 337 ns
bunch crossing time

= laser completely driven by time structure, study only partially valid for
warm technology

Detector design:
e Large disruption angle requires crab crossing with o ~ 35mrad

e forward part of detector completely driven by laser and crossing angle

e outer part kept identical to eTe™ TDR-detector
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Beam parameters for ,/see = 500 GeV

ete” |y 0!
(optimistic)

N/10% 2 2 2
o, [mm] 0.3 0.3 0.3
pulses/train 2820 | 2820 2820
Repetition rate |Hz| 5 5 5
ey 13/ 1070 [mrad] | 10./0.03]3./0.03 | 2.5/0.03
By mm] at IP | 15/04 | 4/04 | 15/0.3
0y 1] 553/5 | 157/5 | 88/4.3
L(z > 0.82m) 34 | 06 1.1

1034 em =251
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Wavelength of powerful solid state lasers is in the 1pum range, e.g. Nd:YAG
A = 1.06pm

( = 4.5 for /5 = 500 GeV)
(If really needed can double or triple frequency)

Laser focusing in diffraction limited region:

UL,T('Z) - UL,?“@)Jl + ZQ/Z%% 0'L7T<O) — |=£&

\

Zp: Rayleigh length

— cannot vary length and diameter of laser spot simultaneously

Optimum around Zp a2 . = half opening angle of O(1°)
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Fraction of converted electrons:
k= Ny/Ne~1—exp(—A/Ap)
A: pulse energy of laser

For Zp =~ o0, and head on laser-beam collisions:

mhco

~ 1.5J

A()%

Oc¢

= need A ~ 2J (corresponds to €2 ~ 0.2)
(for head on e~ -laser collisions)

= total laser power of ~ 2 x 30kW needed

= ~ 60 Mercury lasers from the Livermore fusion program
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TESLA solution: recycle photons in resonant ring cavity:

e
i_‘
\Y
e total length:
~ 100m
e mounted  around
the detector Detector
e all mirrors outside |
s
detector e, 'y
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Principles of a cavity

e cavity with N mirrors with reflectivity R;

e loss per round trip V' = Ry - R5...- Ry - L (L = other losses)
1— Ry
(1—vE V)

e power enhancement of cavity A = (R =coupling mirror)

e maximal for R =V

103 oo
< ]
)
5 A =200 oo
= 5
< 2 ieiiiinnsi i, S
= ] :
- Ri=LFqys- Ryp
P :
= 5
g Ryr= 99.94E %
10*

99.0 99.2 99.4 99.6 99.8 100.0
Mirror reflectivity Rux [%0]

Power enhancement > 100 possible for realistic reflectivities
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e To have highly efficient mirrors need
crossing angle beam-laser

e crossing angle results in smaller conver-
sion probability

depends on Rayleigh length HE

e laser divergence and therefore mirror size eln
-- y @

e finite mirrors result in diffraction losses Quadrupole =
and broadening of the focus

e have to find optimum crossing an-
gle/Rayleigh length

Laser Out

= even higher laser power needed
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Lossfactor

Overview_loss_HH_Zeuthen_meeting.OPJ, Graph2

Diffraction losses are small even for small mirrors

telescopic cavity, magnification sqrt(3)
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However diffraction broadening is serious

telescopic cavity, magnification sqrt(3)

4,5
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Optimum for relatively small mirrors

©

a/w = (‘).75+
a/w=1.00"x

aw=125—=x"

Total Luminosity [1 0330m'2s'1
~ ~ ~ oo oo oo oo
N ® ® ® M » o o
I I I I I I I I

~
N
\

Laser energy 8.55 J, pulse duration 1.5 ps

~

50 55 60 65 70 75 80 85
Collision angle a. [mrad]
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Optimum parameters

LLASER PARAMETERS

TDR prT. VI

THIS STUDY

Rayleigh length Zp
Collision angle oy

Laser energy A

pulse duration oy, ,
nonlinearity parameter &2
Total Luminosity [10%*cm

—28—1]

0.35 mm

5J
1.5 ps
0.30
1.10

0.63 mm
55.1 mrad
9.0 J
1.5 ps
0.30
1.05

TDR parameters can be reproduced

However larger laser pulse-power needed
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Alignment tolerances

Total length of cavity: AL ~ 0.3nm
Correction procedure understood e.g. from gravitational wave antennas

Misalignment of focusing telescope:

30
convex mirror displaced, Gaussian beam
25 concave mirror displaced, Gaussian beam
—n— 6.5 micron-cavity, diffraction broadened waist
for a=59.4 cm (radius of concave mirror)
20

Need precision ot
~ 100nm

Beam waist (um)

T 1 T T T T T T T T T T T T T T
-50 0 S0 100 150 200 250 300 350 400

Axial displacement of one mirror (nm)
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Filling of the cavity

e Figenmode in cavity is non-Gaussian due to diffraction broadening

e However filling of cavity with Gaussian mode works reasonably well

e need ~ 1000 pulses for A = 215

215.02 —r—t—rr—

172.02 |-
129.01 |-

86.01 K

eRi=99% oa/W=0.75 :
¢ Gaul}-seed o wo=40 m]

430 [l 500: roundtrips E
: 1000 roundtrips
0.00 L. A N RPN B
4.00 1.03E+03 2.05E+03 3.07E+03 44.10E+03

Number of roundtrips
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n of the laser resonator in the hall

Py
-
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Detector and backgrounds

10 *
E
[GeV/em?]

M0 3

Background in the detector driven by 005 | 4245
e large disruption angle ,
1B10?
e angle between outgoing beam and

B-field

005 - - . 1H10

ol 1Ly

e direct background from pair production smaller than in eTe™ due to
anti-pinch effect

e large potential background from backscattering at detector exit
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Background can be suppressed by masks and choice of material

outer mask, z>23cm

e - I
~ TPC S| HCAL Yoke
| 0
% * Tungsten V22K Beampipe
- ‘ Graphite —
Quadrupole -
g 300 i
2 i B direct hits  °
250 * H backscatterd{
200 * e *
e Backerounds are similar to eTe” and ; ]
150 - B
should thus be manageable ’ ’
. 100 - .
e However detector is dead for § < 7.5° ; :
| |
0 ] . - ==
1 2 3 4 5
layer
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Low energy qq background

e Large luminosity and large cross section vy — qq at low /s

= (O(1)event /bx overlaid to physics events (pileup)

>
S 10°) i
e Due to large boost pileup 2
tracks are forward peaked 102
e Can be largely rejected if 7
physics in not forward peaked ,
(like vy — WHTW™) 10 |
0 0.2 0.4 0.6 0.8 1
coso
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e Additional help/complication: beamspot length ~ 200um
= signal and pileup separated in z
— microvertex detector can help to separate

— can screw up b-tagging. e.g. in Higgs analysis

Integrated Impact Parameter distribution for Slgnal and pileup

e T S .

e e

wl L

i o o T S
| | | | | | s1gnal |

0.2 background -
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Pileup gives also non negligible background in detector

Hits in vertex detector from beam and pileup

g 20 [ T [ [ rT [
Z I —qq |
=
— beam
15 .
10 5
57 _|
| | | R | |
0 1 2 3 4 5

layer
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Pileup affects seriously some analyses

no pileup 1.8 events/bx
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Conclusions pileup

e Pileup is a serious issue at a ~yy-collider

e Very good time stamping is a must (no problem at TESLA)
e the long bunches at TESLA help additionally
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Conclusions

e no showstoppers found so far

e the laser-cavity seems diflicult but possible

e backgrounds are under control

e however the price to pay is a dead detector below 7.5°

e if you want the photon collider to become a reality you have to work
on the technical issues
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