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Introduction

Physics Motivation:
Want to study γγ → H → bb̄, γγ →W+W−, γγ → SUSY
⇒ need

√
s = 120GeV− maximum possible with high luminosity.

TESLA bunch structure: bunch trains with 2800 bunches/train and 337 ns
bunch crossing time

ß laser completely driven by time structure, study only partially valid for
warm technology

Detector design:

• Large disruption angle requires crab crossing with α ≈ 35mrad

• forward part of detector completely driven by laser and crossing angle

• outer part kept identical to e+e− TDR-detector
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Beam parameters for
√
see = 500 GeV

e+e− γγ γγ

(optimistic)

N/1010 2 2 2

σz [mm] 0.3 0.3 0.3

pulses/train 2820 2820 2820

Repetition rate [Hz] 5 5 5

γεx/y/10−6 [m·rad] 10./0.03 3./0.03 2.5/0.03

βx/y [mm] at IP 15/0.4 4/0.4 1.5/0.3

σx/y [nm] 553/5 157/5 88/4.3

L(z > 0.8zm) 3.4 0.6 1.1

[1034cm−2s−1]

LCWS04, Paris 3 Klaus Mönig



The Laser

Wavelength of powerful solid state lasers is in the 1µm range, e.g. Nd:YAG
λ = 1.06µm

(x = 4.5 for
√
s = 500 GeV)

(If really needed can double or triple frequency)

Laser focusing in diffraction limited region:

σL,r(z) = σL,r(0)
√√√√1 + z2/Z2

R σL,r(0) =

√√√√√√√√
λZR
2π

ZR: Rayleigh length

ZR

σ(0)

→ cannot vary length and diameter of laser spot simultaneously

Optimum around ZR ≈ σz ß half opening angle of O(1◦)
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Fraction of converted electrons:

k = Nγ/Ne ≈ 1− exp(−A/A0)

A: pulse energy of laser

For ZR ≈ σz and head on laser-beam collisions:

A0 ≈
πh̄cσz
σc

≈ 1.5J

⇒ need A ≈ 2J (corresponds to ξ2 ≈ 0.2)
(for head on e−-laser collisions)

⇒ total laser power of ∼ 2× 30 kW needed

ß ∼ 60 Mercury lasers from the Livermore fusion program
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TESLA solution: recycle photons in resonant ring cavity:

• total length:
∼ 100 m

•mounted around
the detector

• all mirrors outside
detector

Detector
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Principles of a cavity

• cavity with N mirrors with reflectivity Ri
• loss per round trip V = R2 · R3 . . . · RN · L (L = other losses)

• power enhancement of cavity A = 1−R1

(1−√R1V )2 (R1 =coupling mirror)

•maximal for R1 = V

Power enhancement > 100 possible for realistic reflectivities
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• To have highly efficient mirrors need
crossing angle beam-laser

• crossing angle results in smaller conver-
sion probability

• laser divergence and therefore mirror size
depends on Rayleigh length

• finite mirrors result in diffraction losses
and broadening of the focus

• have to find optimum crossing an-
gle/Rayleigh length

⇒ even higher laser power needed
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Diffraction losses are small even for small mirrors
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However diffraction broadening is serious
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Optimum for relatively small mirrors
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Optimum parameters

Laser parameters TDR pt. VI This study
Rayleigh length ZR 0.35 mm 0.63 mm
Collision angle α0 55.1 mrad
Laser energy A 5 J 9.0 J
pulse duration σL,z 1.5 ps 1.5 ps

nonlinearity parameter ξ2 0.30 0.30

Total Luminosity [1034cm−2s−1] 1.10 1.05

TDR parameters can be reproduced

However larger laser pulse-power needed
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Alignment tolerances

Total length of cavity: ∆L ∼ 0.3nm

Correction procedure understood e.g. from gravitational wave antennas

Misalignment of focusing telescope:

Need precision of
∼ 100nm
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Filling of the cavity

• Eigenmode in cavity is non-Gaussian due to diffraction broadening

•However filling of cavity with Gaussian mode works reasonably well

• need ∼ 1000 pulses for A = 215

maxA      = 215

1000 roundtrips

500 roundtrips
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Design of the laser resonator in the hall
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Detector and backgrounds

Background in the detector driven by

• large disruption angle

• angle between outgoing beam and
B-field
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• direct background from pair production smaller than in e+e− due to
anti-pinch effect

• large potential background from backscattering at detector exit
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Background can be suppressed by masks and choice of material
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Quadrupole

Beampipe
Graphite

TPC

Tungsten Mask

E
C

A
L

outer mask, z>23cm

inner mask, z>1m

• Backgrounds are similar to e+e− and
should thus be manageable

•However detector is dead for θ < 7.5◦
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Low energy qq̄ background

• Large luminosity and large cross section γγ → qq̄ at low
√
s

ßO(1)event/bx overlaid to physics events (pileup)

•Due to large boost pileup
tracks are forward peaked

• Can be largely rejected if
physics in not forward peaked
(like γγ →W+W−) 10
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•Additional help/complication: beamspot length ∼ 200µm

⇒ signal and pileup separated in z

– microvertex detector can help to separate

– can screw up b-tagging, e.g. in Higgs analysis

Integrated Impact Parameter distribution for signal and pileup
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Pileup gives also non negligible background in detector

Hits in vertex detector from beam and pileup
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Pileup affects seriously some analyses

e γ νW

m W

no pileup
no cuts

all cuts
IP cut

Wm

1.8 events/bx

Conclusions pileup

• Pileup is a serious issue at a γγ-collider

•Very good time stamping is a must (no problem at TESLA)

• the long bunches at TESLA help additionally
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Conclusions

• no showstoppers found so far

• the laser-cavity seems difficult but possible

• backgrounds are under control

• however the price to pay is a dead detector below 7.5◦

• if you want the photon collider to become a reality you have to work
on the technical issues
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