Towards a fragmentation model for Sherpa

Steffen Schumann

Institute for Theoretical Physics Dresden University of Technology

- The event generator Sherpa: scope and some applications
- A cluster fragmentation model for Sherpa
 - Cluster formation model
 - Cluster decay model

Outlook

The Sherpa approach

Sherpa (Simulation of High Energy Reactions of PArticles) is a new multi-purpose event generator entirely written in C++

The scope:

- Full simulation of high energetic particle reactions at existing and future collider experiments, including e^+e^- , $\gamma\gamma$, $e\gamma$, $p\bar{p}$ and pp collisions
- Account for multi-jet production by using tree level multi-jet matrix elements combined with the parton shower à la CKKW S. Catani,F. Krauss, R. Kuhn, B. Webber, JHEP 0111:063,2001 F. Krauss, JHEP 0208:015,2002

Features:

- Modular structure of independent physics modules
- Modules are interfaced through abstract handler classes
- Bottom-up approach (slim overhead that can be easily adapted)

The Sherpa approach for e^+e^- collisions

Split the simulation in parts:

- Beam setup
 - Initial state radiation
 - Laser backscattering for $e\gamma$ and $\gamma\gamma$
- Hard Process and decays via multi-jet ME's

AMEGIC++ (see talk by S.Jadach on Thursday)

- Parton Shower
 - APACIC++
- Hadronization
 - interface to Pythia string fragmentation
 - own cluster model under development (not included in the official release yet)

Sherpa: Event shapes

Sherpa: Four jet angles

Bengtsson-Zerwas

Sherpa: inclusive Z production at Tevatron

Sherpa: inclusive Z production at Tevatron

A Cluster-Hadronization Model for Sherpa

J. Winter et al, hep-ph/0311085 modelling the non-perturbative dynamics of a partonic system

- Cluster-formation model light flavour pair production **Cluster-decay model Features:** Parametrization of primary-hadron generation
- LPHD and preconfinement
- Locality and universality
- Currently restricted to light-quark sector

Parton shower ends up with colour-ordered parton list

Results for $e^+e^- \rightarrow \mathcal{H}$

Primary cluster mass distribution with CRM

 Primary cluster mass spectrum independent of cm energy of the hard subprocess

Cluster-Decay Model

Ansatz: Cluster mass \Rightarrow transition type

- $M_{\mathcal{C}}$ in hadron regime
 - \rightarrow 1-body decay $\boldsymbol{\mathcal{C}} \rightarrow \boldsymbol{\mathcal{H}}$

weight:
$$\mathcal{W} = \exp\left(-\frac{Q^2}{Q_0^2}\right)^2$$

- else 2-body decay $\mathcal{C} \to \mathcal{X}\mathcal{Y}$
 - determine $M_{\mathcal{X}} \& M_{\mathcal{Y}}$

kinematics:
$$p_{1,2} = \left(1 - \frac{Q_0}{M_C}\right) p_{1,2}^{C}$$

 $p_{\bar{f},f} = \frac{Q_0}{M_C} p_{2,1}^{C}$
 $Q_0 = \hat{Q}_0 \frac{M_C}{M_C + \hat{M}_0}$

channel selection

•
$$\mathcal{C} \to \mathcal{CC}$$
 / $\mathcal{C} \to \mathcal{HH}$
• $\mathcal{C} \to \mathcal{CH} / \mathcal{HC}$

Cluster-Decay Model: Soft Colour Reconnection

direct and crossed flavour arrangement in cluster two-body decays

charged-particle multiplicities for uds events at Z-peak

	$\langle \mathcal{N}_{\mathrm{ch}}^{\mathrm{uds}} angle$	$\langle \mathcal{N}^{ m uds}_{\pi^\pm} angle$	$\langle \mathcal{N}^{\mathrm{uds}}_{K^\pm} angle$	$\langle \mathcal{N}_{p,ar{p}}^{\mathrm{uds}} angle$
PYTHIA-6.1(uds)	19.84	16.72	2.010	0.856
HERWIG-6.1(uds)	18.86	15.37	1.693	1.568
SHERPA $lpha$	20.15	16.83	2.018	1.047
DELPHI	19.94 ± 0.34	16.84 ± 0.87	2.02 ± 0.07	1.07 ± 0.05
SLD	20.048 ± 0.316	16.579 ± 0.304	2.000 ± 0.068	1.094 ± 0.043

Results for $e^+e^- \to \mathcal{H}$

 $\delta_c = 1.7 \pm 0.5 \ , \ \delta_b = 3.05 \pm 0.19$

Steffen Schumann

Results for $e^+e^- \rightarrow \mathcal{H}$

Conclusion/Outlook

Conclusion

Sherpa including the ME's of AMEGIC++ and the CKKW prescription to combine them with the PS is a powerful tool to attempt the description of LEP and Tevatron data and to study the extrapolation to LC and LHC energies

Outlook

- Extend cluster hadronization package
 - Treatment of heavy quark sector
 - Parameter tuning
 - Application to hadron collisions
- Study of soft colour reconnection model

Sources

- T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. S. and J. Winter, JHEP 0402:056,2004
- current version SHERPA α -1.3 available under

http://www.physik.tu-dresden.de/~krauss/hep