

Tom Markiewicz SLAC

LCWS Paris

20 April 2004

Crossing Angle

- Warm LC requires non-zero crossing angle
- Cold LC can choose zero or non-zero angle
- Minimum angle set by:
 - Need to avoid parasitic collisions and beam-beam induced jitter (20 mrad)
 - Need enough transverse space for QD0 magnet, given
 - L* (a semi-free parameter) (3.51m)
 - Exit aperture at LUM (1.2cm→2.0cm→1.5cm)
 - QDO bore size (1.0 cm)
 - Design choice that exit beam goes outside of QDO
- Maximum angle set by
 - Estimated performance ($\Delta \phi$) of Crab Cavities on either side of IP that rotate bunches (~40 mrad)
 - Beam optics effects:
 - ϵ growth due to SR in QDO goes as $(B_s L^* \theta)^{5/2}$

Multi-bunch interaction increases static beam offsets if θ_c too small

NLC Final Doublet Quad Specs Gradient "easy"; L* & Lum ap define space

TRC (2002) 500 GeV Lattice

Magnet	Aperture	Gradient	Rmax if REC	Radial Space	Z_ip	Length
QD0	1.0 cm	141.6 T/m	5.3cm	7.0cm- R _{LUM}	3.51 m	2.2m
QF1	1.0 cm	80.2 T/m	2.7cm	>7.81cm	7.81 m	2.0 m

Snowmass 2001 500 GeV Lattice

Increased LUM aperture decreasing available space

Magnet	Aperture	Gradient	Rmax if REC	Radial Space /	Z_ip	Length
QD0	1.0 cm	144 T/m	5.5cm	5.8cm	3.81 m	2.0m
QF1	1.0 cm	36.4 T/m	2.2cm	>7.81cm	7.76 m	4.0 m

SC Magnet If r_{in}=10mm, r_{out}=57mm seemed easy

L*=Distance from IP to QDO

- A parameter that can be varied within a range for either design
 - r_vxd, z, length, aperture, gradient of QD0, QF1 all enter
- Motivations for larger L*
 - Move QDO outside the detector to stable ground
 - Move LUMON further back if pair backsplash a problem
- Note: L* of EXTRACTION LINE now 6m
 - Its z position variable as well
 - Especially valuable as it receives biggest hit from 4 GeV pairs

Exit Aperture at LUM Beam Pipe Radius at IP

- Same issues for warm vs. cold choice
- Design requirement that ALL Synchrotron Radiation Leaves IP
 - Collimation system design & performance
 - Magnitude and distribution of non-gaussian beam halo
 - Level of aggression in setting collimators and resultant
 - beam jitter amplification due to collimator wakefields
 - muon production
 - Level of conservatism
 - Worst beam conditions that system must safely handle
- The larger the exit, the less the adverse effects of e+e- pairs
 - Less albido from splattered e+e- pairs when high Z LUM is at a larger radius than the low Z albido absorber
 - Largest radiation-dosed area follows high energy exiting pairs Tom Markiewicz

At SLD/SLC SR WAS THE PROBLEM

NLC Collimation System Designed to Make Detector Free of Machine Backgrounds

SR at z=3.15m due to Halo at DESIGN collimator settings

Set Low Z Mask aperture at 1.2cm

Study Non-Optimal Running Conditions Open Collimators x2 & Broaden Halo x2 so that 10⁻⁵ of beam is lost on SR Dump at IP

SR at IP in "1000x worst case" Study

SR distribution ~2x wider in y at IP with direct hits unless BP >1.25cm

Max Radius of SR @ z=-3.5, 0, 3.0 & 5.0 m

Nominal Collimator Gaps & ϵ

Max R of SR @ z=-3.5, 0, 3.0 & 5.0 m

need larger apertures for safety

Increase in Minimum Aperture vs. z as Collimator Gap Doubled

SR Photon Energy at IP with x2 Gaps assuming x2 ϵ

Collimator Wakefields

Jitter Amplification from Collimator Wakefields may put Luminosity at Risk if Collimator Gaps too small

Ab~0.7 (NLC w/Octupoles) Amp~1.22 A_b~1.3 (NLC w/o Octupoles) Amp~1.64 Ab~3 (TESLA TDR)

Jitter amplification in y-plane (due to y') is $(1 + A_{\beta}^2)^{0.5}$ times

4) Nominal Lum at nominal E at risk if amplification too big

If LUM Aperture $1 \text{cm} \rightarrow 2 \text{cm}$ Hit Density r>3cm improves

NLC . The Nevt I inear Collider Droject

Pairs Hammer LUMON to r~6cm Half the radius of the 40mrad detector NOT an efficient design

Pair Energy Flow per Bunch (e+e-, 20mrad X, SC Magnets)

Detector	GeV	mW	%			> ¬ / /		
QDF1-A	74909.1	276.4902	37.58%		QDF1-A Detail			
Escape	57783.6	213.2797	28.99%		ataatar		100	0/
LUMON	26265.8	96.94732	13.18%			Gev	mvv	7 0
QDF1-B	11457.8	42.29085	5.75%	QDF1	-A	/4909.1	276.4902	37.58%
QDF1-C	11113.7	41.02083	5.58%	S.S. B	eampipe	14136.6	52.17827	18.87%
PACMAN	10342.7	38.17509	5.19%	S.S. B	P cooling	10457.6	38.5991	13.96%
M2	2983.87	11.01347	1.50%	S.S. Coil support		15281.3	56.40346	20.40%
QD0	2059.58	7.601915	1.03%	Inner (Coil	14939.7	55.14262	19.94%
LOWZ	1286.89	4.749903	0.65%	G10 sı	ipport	1249.34	4.611309	1.67%
SD0	555.73	2.051204	0.28%	Inner I	ia He	80 796	0 298219	0 11%
QF1	364.764	1.346347	0.18%	G10 I	ia Ua	271 402	1 002070	0.1170
M1	166.624	0.615011	0.08%		iq. 110	271.492	1.002079	0.30%
Endcap MUON	40.964	0.151198	0.02%	S.S. C	oil support	6307.23	23.28003	8.42%
Instr. Mask	0.466	0.00172	0.00%	Outer	Coil	7275.19	26.85278	9.71%
S.S. Beampipe	0.271	0.001	0.00%	G10 sı	ipport	819.179	3.023596	1.09%
Be Beampipe	0.196	0.000723	0.00%	Outer 1	Liq. He	36.84	0.135977	0.05%
Endcap EM	0.164	0.000605	0.00%	G10 L	iq. He	125.983	0.465004	0.17%
Endcap HAD	0.146	0.000539	0.00%	S S SI	nnort	1563 19	5 76975	2 09%
Barrel EM	0.117	0.000432	0.00%	Heat of	hield	376 007	1 201/00	0 50%
VXD	0.08	0.000295	0.00%			1007 ((1.391499	
TOTAL	199333	735.7383	100.00%	Cryost	at shell	1987.66	7.3364730	m 1/121.165%

Max. DOSE rate ~100 MRad/year

Max. DOSE Rate in LUMON and LOW-Z

Conclusions

- Have not really spoken to
 - fact that crossing angle opens up the extraction line & its instrumentation
 - constraints due to detector access and final quadrupole support
- I have urged that a small loss of acceptance in the <25 mrad region
 - Allows for more freedom in extracting damaging SR and e+e- pairs
 - is a reasonable price to pay for clean extraction
 - "Hold the line" on VXD radius as long as possible
 - Acceptance "hole" is physically small & in a very ugly area of detector
 - Pair/lumon detector region should be minimized from 40 to ~25 mrad
- There is still freedom to optimize L*, theta, L* extraction
- From the "Detector survival point of view" crossing angle is only as important as aperture: 70Mrad/year damage
- Extraction quad magnet heating and radiation dose issues more a function of aperture than crossing angle
- Need to understand if 7 mrad JLC crossing angle is OK from jitter
- Need to understand is there really is an issue to "crab" ±10 deg.
 - If so, IR2, promised by Spec. document, is in trouble