R&D of strip-array ECAL

Kiyotomo Kawagoe (Kobe) for the GLC Calorimeter group (KEK, Kobe, Konan, Niigata, Shinshu, Tsukuba) 19-23 April 2004, LCWS in Paris

- Introduction
- Beam test results
 - Uniformity
 - Energy resolution and linearity
 - Position and angular resolutions
 - •Two particle separation
- Summary

Introduction

Requirements for LC ECAL :

- Energy resolution/linearity
- Transverse/longitudinal granularity for "particle flow" analysis
- Our baseline design :
 - lead/scintillator sampling ECAL
 - Good hermeticity
 - Established technology
 - Reasonable cost

Scintillator strip-array ECAL

- Array of 1cmx20cmx2mm-thick strips
- Advantages :
 - Fine granularity (1cmx1cm effective cell size)
 - Reasonable cost
 - No WLS fiber bending
- Disadvantages :
 - Ghost rejection needed

Structure of scintillator strips

 Average number of photoelectrons per strip for a MIP particle is measured to be ~4.6 from a bench test with beta-ray.

Module design for beam test

A picture of the test module

Beam test

- Unseparated beams (e, pi, mu, p=1 4 GeV/c) at KEK PS
- ECAL on movable stage
- Electron-ID with two Cherenkov counters
- Tracking with drift chambers (σ < 0.3mm at the ECAL surface)
- 2002 Fall: First trial for energy resolution and linearity
- 2004 Mar.: more statistics for more detailed studies

A typical event (4 GeV electron)

x-layers

y-layers

8

Response uniformity

- Incident position determined by Drift Chambers ($\sigma_x < 0.3$ mm)
- Response in 1st SL x-strips for 4GeV π and e
- Response sum over strips : uniformity < 5%</p>

If photon statistics is taken into account, beam test result is consistent with simulation.

Linearity

- Linearity : < 3.5%</p>
 - < 1% above 2GeV</p>
- In good agreement with simulation
- Deviation at 1 GeV is probably due to the material in front (now investigating).

Position measurement

- Incident position is determined by Gaussian fit in each super layer
 - 9 adjacent strips are used for fitting
- With Gaussian fit, position resolution can be better than the weighted mean

Spatial resolution

Position resolution for 4 GeV electron

Angle measurement

- Incident angle was changed by rotating the movable stage.
- Shower-axis angle is determined by fitting 5 points from 1 S.L. through 5 S.L.

A 4 GeV e events, θ =15.9 degree

Angle measurement of normal incident electrons

Angle measurement of 4 GeV electrons with non-zero incident angle

Study of two-particle separation

Generation of twoparticle events from real beam test events

- Pick up independent two electron events
- Add the two events with some distance between them

Algorithm of two-particle separation (very very preliminary...)

- Currently only 2nd SL (near shower maximum) is used.
- Search for peaks and count number of peaks
- Fit with multi-Gaussian function

Some examples

1 GeV e + 4 GeV e

4 GeV e + 4 GeV e

• A very preliminary analysis suggests that two electrons with $\Delta x=2\sim3$ cm may be separated.

Summary

- Scintillator strip-array ECAL was tested with test beam
 - Good uniformity for MIP
 - Energy resolution : 13%/sqrt(E) + 0%
 - Spatial resolution : 2.0mm for 4GeV electron
 - Shower-axis angle measured : σ_{θ} = 2.3 degree for 4GeV electron
 - Two-particle separation/ghost rejection : still under study
- Full simulation study : in progress