Crossing rep	g-angle-or-not physological physological structure of the second structure of	sics implications one-meeting
cold	half-angle = 10, 4, 1, 0.3,	0 mrad
warm	half-angle = $10, 4 \text{ mrad}$	
technical issues	more IP tuning crab-cavity req. SC mini-quad. backgrounds → worse at	optics design constraints beam(strahlung) extraction electrostatic separators collimation 1 TeV
physics issues evaluated <i>no ki</i>	hermetic $\gamma\gamma$ veto (track impact par. dilution \overrightarrow{B} and \overrightarrow{P} not /// Her arguments either way \rightarrow	<pre>post-IP diagnostics on) for energy and polarization > quantify impact</pre>

Philip Bambade - LAL

LCWS04 - MDI 20/4/2004

meeting agenda of the physics evaluation

http://www-flc.desy.de/bdir/meetingagenda190104.html

1. Introduction, specification and context of study, meeting goals	10'	P. Bambade/LAL		
2. Smuon and stau searches with small slepton-neutralino mass differences				
Implications for dark matter interpretation in co-annihilation scenarios	25'	Z. Zhang/LAL		
3. Smuon and stau searches with small slepton-neutralino mass differences	20'	U. Martyn/DESY		
Tentative conclusion & further work concerning impact on slepton search capabilities				
4. Crossing angle and luminosity spectrum measurement	10'	D. Miller/UCL		
5. News from the ALPCG SLAC Workshop	20'	E. Torrence/Oregon		
6. Polarisation effects of the crossing angle	10'	K. Mönig/DESY		
7. Review of arguments for upstream / downstream polarimetry	15'	G. Mortgat-Pick/Durham		
		P. Schüler/DESY		
Tentative conclusion & further work concerning impact on energy and polarisation				
8. Status of the detector background simulations				
Comparison of recent beamstrahlung pair calculations	20'	K. Büsser/DESY		
9. Electron identification & veto in the LCAL / LumCAL				
Comparison with recent results from Takashi Maruyama	20'	K. Kousnetzova/DESY		
10. Update on gamma-gamma to hadrons calculation	20'	T. Barklow/SLAC		
Tentative conclusion & further work concerning requirements on the background and very forward region				
Conclude by LCWS04 - strengthen international collaboration (GLC)				
Philip Bambade - LALLCWS04 - MDI20/4/2004		2		

SUSY dark matter motivation for low angle veto

• Some popular dark matter SUSY explanations need the LSP χ^0 to be quasi mass-degenerate with the lightest sleptons χ, μ, \dots

\rightarrow co-annihilation mechanism

- mSUGRA + new dark matter constraints from WMAP cosmic microwave background measurements point in this direction
- Scenario considered also relevant more generally in the MSSM

Acceptable solutions in mSUGRA

M. Battaglia et al. hep-ph/0306219

Philip Bambade - LAL

LCWS04 - MDI 20/4/2004

 $\gamma\gamma$ veto crucial to detect sleptons in highly mass-degenerate SUSY scenarios \rightarrow spectator e (~10mrad), μ (~20mrad)

- Important LC channel, complementary to LHC \rightarrow talk by Z. Zhang
- Precise slepton masses \leftrightarrow dark matter \leftrightarrow constraints from Planck (luminosity & energy strategy) (LC/LHC \leftrightarrow cosmology) Philip Bambade - LAL LCWS04 - MDI 20/4/2004 4

Philip Bambade - LAL

⁻⁸⁰ -60 -40 -20 0 20 40 60 80 Energy Deposition per cm² [mm] LCWS04 - MDI 20/4/2004

Same cuts OK for both head-on and crossing-angle collisions

signal efficiency ~ 80%

spectrum end-points preserved

 → m_{sµ} and m_{LSP} can be measured with precision for this benchmark point
 → more model-independent : smallest Δm _{sµ-χ} detectable wrt to veto angle and quality ? Philip Bambade - LAL
 LCWS04 - MDI 20/4/2004
 6

Caveat 1 : TESLA → electron veto efficiencies with beamstrahlung pairs from single bunch crossing ; warm LC will need fast read-out (R&D?) to avoid pile-up Caveat 2 : some physics backgrounds still need to be fully included in the analysis Philip Bambade - LAL LCWS04 - MDI 20/4/2004 7

Importance of high veto efficiency (BeamCAL)

Effect of crossing-angle on cms energy calibration

• Acollinearity angle of Bhabha events monitor the luminosity-weighted centre-of-mass spectrum in the presence of ISR and beamstrahlung

×

S. Boogart
D. Miller
Reconstructed
$$\frac{\sqrt{s'}}{\sqrt{s}} = \sqrt{\cot \frac{\theta^{*}}{2} \cot \frac{\theta^{*}}{2}}$$

Desired precision : ~ few 10^{-4} - 5 10^{-5} for top & W masses (10^{-5} - 10^{-6} to improve M_Z measurement)

No problems from a crossing-angle \rightarrow the boost can be corrected exactly in the ultra-relativistic limit T. Barklow

LCWS04 - MDI 20/4/2004

Steering and depolarisation from the solenoid with a 10 mrad crossing-angle (+ M. Woods)

Solenoid B field not aligned to momentum \Rightarrow deflection ~ 0.4 mrad (assumes total length = 8 m, B = 4 T, $E_{\rm b} = 250 \text{ GeV}$)

- 100 % longitudinal polarisation \Rightarrow spin precession to IP ~ 115 mrad • is known and can be corrected $\Rightarrow \Delta \mathcal{P} = 1 - \cos(0.115) = 0.7 \%$
- If measurement error of polarimeter $\Delta \mathcal{P} \sim 0.5 \% \Rightarrow$ additional spin ightarrowmisalignment ~ 100 mrad $\Rightarrow \Delta P = \cos(0.115) - \cos(0.215) = 1.6 \%$!
- Must include effects from fringe fields $\Rightarrow \Delta P = 0.7$ %

Physics requirement

G. Mortgat-Pick

K. Mönig

new physics searches $\Delta \mathcal{P} \sim 0.5 \%$

ightarrow

SM tests @ HE $\Delta P \sim 0.2 - 0.1 \%$

SM tests @ GigaZ $\Delta \mathcal{P} < 0.1 \%$

 \Rightarrow extra vertical bends (+ some tuning) required to correct for both effects (M. Woods et al. are working on this) Philip Bambade - LAL LCWS04 - MDI 20/4/2004 10

Energy and polarisation calibration strategies

- 1. relevant lumi wtd info from Bhabhas, $Z\gamma$, WW,... processes \rightarrow needs statistics
- 2. pre-IP calibration needed to monitor incoming changes in E and P
- 3. post-IP very desirable to measure beambeam effects and validate simulation

but quasi impossible with head-on collisions : how essential ?

Example : beam-beam depolarisation 1. spin precession in the magnetic field 2. spin-flip probability in beamstrahlung total depolarisation ~ 4 × lumi - weighted Nice bonus of crossing-angle but not major physics reason to choose to have one Philip Bambade - LAL LCWS04 - MDI 20/4/2004

Bottom-line on crossing-angle-or-not physics implications

Head-on quantifiably better for some aspects but crossing-angle attractive to enable good spent beam diagnostics (redundancy !) Overall physics balance slightly in favor of head-on geometry but both are certainly acceptable for physics Driving issues mainly on technical side \rightarrow two main risk factors:

- head-on: constrained extraction potentially limiting the luminosity and/or energy performances, electrostatic separators
- crossing-angle: demonstration of very small quads, complications from crab-crossing tuning and requirements

TESLA can choose: head-on-or-not, magnitude of the crossing-angle... Hybrid schemes combining virtues of both may be possible in TESLA

0.3 mrad vertical angle (Brinkman)1 mrad horizontal angle (Napoly).

R. Appleby

Not a LC technology choice driver - Background pile-up matters more Philip Bambade - LAL LCWS04 - MDI 20/4/2004 12