

Software tools for GLC studies

Akiya Miyamoto KEK 20 April, 2004

Representing ACFA-Sim Group http://acfahep.kek.jp/subg/sim/

Contents

- JSF: the Flow Controller
- Jupiter (Geant4 Full Detector Simulator)
- Summary

List of software tools

- LCLIB Quick Simulator and old fortran utilities
- JLCSIM Geant3 based full detector simulator
- PHYSSIM Event generators based on HELAS and Analysis packages consists of Jet Clustering and four vector manipulation
- JSF Root based software study framework
- Jupiter Geant4 based full detector simulator
- Satellites Analysis modules, in preparation

General information from ACFA-Sim Home Page http://acfahep.kek.jp/subg/sim/index.html Packages are maintained on CVS, available at http://jlccvs.kek.jp/

A.Miyamoto@LCWS2004

JSF: the Flow Controller

- Based on ROOT: C++
- Modular: Unified Framework for
 - Event generation
 - Detector Simulation
 - Event Reconstruction
 - Physics Analysis
 - Beam test
- Object I/O
 - Each module's data in a ROOT tree
 - User data (hits, ntuple, parameters) also in the same tree
- Unified User Interface for Batch and Interactive
 - GUI/CUI (user definable command line args. and default vals.)
 - Simple built-in event display

Packages provided with JSF

- JSF includes the following sub-packages
 - Generator interface to Pythia, Physsim, Grace
 - Hadronizer (Pythia, Herwig)
 - QuickSim (C++ wrapper for LCLIB)
 - C++ version of Bases/Spring
 - GUI, Event Display, ZVTOP, JETNET, Jupiter

•

A.Miyamoto@LCWS2004

Les Houche Interface in JSF

- Les Houches 2001 standard for the interface of a parton generator and a shower generator was implemented in JSF.
 - A parton generator outputs parton information a la Les Houches format in a ASCII file.
 - Interfaces in JSF read it and does parton shower using Pythia (Herwig in Future)

Example:

- LCGrace:
 - LC version of the GRACE event generator, including all diagrams for a given process.
 - Parton four momenta generated by SPRING package are saved with Les Houche format in an ASCII file.
 - ~30 processes have been prepared such as

$$e^+e^- \rightarrow W\overline{W}H$$
, $t\overline{t}H$, $4f$, $6f$, $4f + H$ $(f = \mathbf{u}, \ell, q)$

Sample events

$$e^+e^- \rightarrow t \, \overline{t} \, H$$

$$e^+e^- \rightarrow n\bar{n}HH$$

Jupiter: Geant4 based Full Detector Simulator

Features:

Core developper: K.Hoshina and K.Fujii

- Modular structure for easy update, install/uninstall of subdetectors
- Powerful base classes that provide unified interface to
 - facilitate easy (un)installation of components by methods such as InstallIn, Assemble, Cabling
 - Help implementation of detailed hierarchiral structures.
 This helps to save memory size.
 - Minimize user-written source code by
 - Automatic naming system & material management
 - B-field compositions for accelerators
- Input : HEPEVT, CAIN (ASCII) or generators in JSF.
- Output
 - Output class allows extrnal methods. Using this mechanism, it can output ASCII flat file and JSF/ROOT fie.

Standard Geometry of Jupiter

A.Miyamoto@LCWS2004

Detector geometries in Jupiter

Beam Delivery System

for Beam BG Study

T.Aso

Crossing 3mrad

Sample events by Jupiter

 $e^+e^- \rightarrow Z^0H^0$ event $\sqrt{s} = 350 \text{GeV}$

Beam Background Simulated By Jupiter

Event source : CAIN

Summary

- JSF framework has been developed based on ROOT. Study tools and interface to them are provided with JSF. It has been used for physics and detector studies.
- Jupiter framework has been developed based on Geant4.
 - Basic detector components and beam delivery system has been implemented. It has been used for studies of detector performance and beam background.
- Future plan for Jupiter includes,
 - Make them LCIO-compliant
 - XML-based description of a detector geometry
 - Improve geometry outside the tracking volume.

•