# LC Physics Simulations With WHIZARD

Wolfgang Kilian (DESY)

LCWS Paris April 2004

- The WHIZARD approach to multi-particle simulations
- How to use the program
- Features, recent add-ons and improvements
- Results and comparisons

### **Multi-Particle Simulations**

### Physics processes:



**LC:** Need high precision – all those tiny (%) background and interference effects on resonance shapes, thresholds, edges . . .

⇒ Full matrix-element partonic simulations (not just integrations), properly interfaced to beams and hadronization, are necessary to meet requirements.

## WHIZARD/O'Mega

Since 2000, WHIZARD (and several other programs) attack this problem:

• Fully automatic matrix element generators are available

These take a process definition and a set of Feynman rules to produce a (Fortran/C) function:

• The (squared) amplitude as a function of given momenta and helicities.

Preferred choice: call O'Mega

T. Ohl

- ⇒ Complete helicity amplitudes computed numerically and recursively
- ⇒ All redundancies eliminated by organizing the calculation (DAG = Directed Acyclical Graph)
- $\Rightarrow$  Computation cost  $\propto n^k$  instead of n!!
- $\Rightarrow$  Models: SM + extensions and MSSM

J. Reuter

QCD amplitudes (gluons and interfering colors): alternatively, call Madgraph and/or CompHEP to generate the amplitudes

- ⇒ Coming soon: Cascades (narrow-width approximation)
- ⇒ QCD: under construction

### **WHIZARD**

Matrix elements are complicated and vary over orders of magnitude

- ⇒ Uniform phase space sampling yields no result
- ⇒ No single parameterization allows for mapping the function into a constant

**Solution:** Multi-channel parameterization with mappings and parameterizations adapted to Feynman diagram structure

\* WHIZARD: Improve by VEGAS adaptation within each channel



#### **WHIZARD**

What does this mean in practice?

- WHIZARD has to find the *important* channels: The Feynman diagram which have the strongest peaks ⇒ correspond to good parameterizations
- WHIZARD has many degrees of freedom to adapt:
  - The optimal binning of each integration dimension (10 50)
  - This is needed for each integration dimension (10 20)
  - The optimal relative weight of each channel (10 1000)
  - $\Rightarrow 10^3 10^6$  degrees of freedom have to self-optimize

Apparently, this works – and at least as good as other methods

### **User interface**

Configure the system: ./configure

• Script searches for Fortran compiler, CERNLIB software, enabled modules, etc.

Make up a process list: Configuration file

• Model (SM, MSSM, ...) and arbitrary list of initial and final states

Compile and install in subdir: make install

• Script(s) call matrix element generators, collect results, compile matrix element code, make process library, compile main program and link with auxiliaries

**Set up the parameters:** Input file(s)

• Run control, physics parameters, beam properties, cuts, ...

Run program: cd results; ./whizard

Adapt grids, integrate cross section(s), generate event sample(s)

Online analysis: make plots

• Fill histograms and process them into graphics

## **Features: LC Summary**

- Beamstrahlung (CIRCE: analytic oder [new] beam-event generator)
- [new] Read beam events (GuineaPig) directly from file
   ⇒ account for beamstrahlung, beam-energy spread, etc.
- ISR: Collinear initial photons
- Longitudinal or transverse (in fact: arbitrary) beam polarization
- Polarization carried through
- Fermion masses
- Physics models (depends on ME generator): QED, SM with variants,
   [new] MSSM (with Les Houches Accord parameter interface)
- Matrix element calculation and event generation works, e.g., for  $2 \to 4$ ,  $2 \to 6$  [ok],  $2 \to 8$  [few cases tested so far]
- Parton shower & fragmentation: PYTHIA interface (Les Houches Accord)
- ASCII or STDHEP event files (LCIO?)

**2002:** Extensive comparison of WHIZARD and LUSIFER cross sections 6-fermion processes:

S. Dittmaier, M. Roth

- LUSIFER: Analytically derived matrix elements for fixed class of processes,
   adaptive multi-channel integration with fixed channel mappings
- WHIZARD/O'Mega: Numerical matrix elements for arbitrary processes, adaptive multi-channel integration with adaptive channel mappings, interfaced to beams and events

#### Old result:

⇒ Agreement where applicable, for some processes no stable WHIZARD result

**2004:** New result (WHIZARD 1.30):

⇒ All processes yield stable result, complete agreement

### Results LUSIFER/WHIZARD



#### **Parameters:**

•  $\sqrt{s} = 500 \text{ GeV}$ , ISR

• Cuts:  $\theta > 5^{\circ}$ , E > 10 GeV

LUSIFER: 10M points sampled

WHIZARD: 5M adapt, 5M integration

### White background:

 $\Rightarrow$  Agreement within 1-3 $\sigma$ 

⇒ WHIZARD error up to factor 2 smaller

#### Yellow band:

 $\Rightarrow$  Gauge invariance violation

LUSIFER: Fixed width, Feynman gauge

O'Mega: Step width, unitary gauge

How much does it cost to have a multi-purpose package?

#### **CPU** time:

- 10M points (as before)
- Intel Fortran 95 compiler for both WHIZARD/O'Mega and LUSIFER (40% faster than g77)
- 3 GHz Pentium

#### Result:

- Generic program more efficient for typical processes
   (same CPU time / smaller error)
- Taylored program more efficient in cases with many identical particles



#### New results:

• 8 fermions, e.g. background to ttH production at  $\sqrt{s}=800~{\rm GeV}$ :

$$e^{+}e^{-} \rightarrow b\bar{b}b\bar{b}e^{-}\bar{\nu}_{e}\nu_{e}e^{+}$$
 7.367(67) ab 3M (adapt) + 1M (integ)  
 $e^{+}e^{-} \rightarrow b\bar{b}b\bar{b}e^{-}\bar{\nu}_{e}\nu_{\mu}\mu^{+}$  7.224(18) ab 1M (adapt) + 1M (integ)  
 $e^{+}e^{-} \rightarrow b\bar{b}b\bar{b}\mu^{-}\bar{\mu}_{e}\nu_{\mu}\mu^{+}$  7.183(18) ab 1M (adapt) + 1M (integ)

CPU time: 1-2 days per process

• MSSM, e.g.  $\tilde{\chi}^+ \tilde{\chi}^-$  production and decay including background at  $\sqrt{s} = 500 \; \mathrm{GeV}$ : SUSY spectrum and parameters: SPS1a (SPHENO)

$$e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 u \bar{d} e^- \bar{\nu}_e$$
 0.8114(7) fb 1M (adapt) + 1M (integ)

CPU time: 3h (massless fermions)

## **Summary**

- WHIZARD/O'Mega yields accurate and useful results for the simulation of multi-particle processes relevant at the LC
- SM  $e^+e^-$  event sample equivalent to  $2~{\rm ab}^{-1}$  available at SLAC
- WHIZARD/O'Mega support SM, MSSM and extensions
- ...and is integrated in the LC physics environment

- Efficiency problems have been resolved,
   and results are in complete agreement with semianalytic program LUSIFER
- Gauge invariant treatment of unstable particles is important for (some) 6f-processes